PAPERmaking! Vol9 Nr3 2023

Nanomaterials 2023 , 13 , 1931

17of 19

42. Isogai, A. Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 2013 , 59 , 449–459. [CrossRef] 43. Ankerfors, M.; Lindström, T.; Söderberg, D. The use of microfibrillated cellulose in fine paper manufacturing–Results from a pilot scale papermaking trial. Nord. Pulp Pap. Res. J. 2014 , 29 , 476–483. [CrossRef] 44. Tarr é s, Q.; Aguado, R.; P è lach, M.; Mutj é , P.; Delgado-Aguilar, M. Electrospray deposition of cellulose nanofibers on paper: Overcoming the limitations of conventional coating. Nanomaterials 2022 , 12 , 79. [CrossRef] 45. Kajanto, I.; Kosonen, M. The potential use of micro-and nanofibrillated cellulose as a reinforcing element in paper. J. Sci. Technol. For. Prod. Process. 2012 , 2 , 42–48. 46. Lourenço, A.F.; Gamelas, J.A.; Sarmento, P.; Ferreira, P.J. A comprehensive study on nanocelluloses in papermaking: The influence of common additives on filler retention and paper strength. Cellulose 2020 , 27 , 5297–5309. [CrossRef] 47. Balea, A.; Merayo, N.; Fuente, E.; Negro, C.; Delgado-Aguilar, M.; Mutje, P.; Blanco, A. Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose 2018 , 25 , 1339–1351. [CrossRef] 48. Dai, L.; Wang, X.; Jiang, X.; Han, Q.; Jiang, F.; Zhu, X.; Xiong, C.; Ni, Y. Role of nanocellulose in colored paper preparation. Int. J. Biol. Macromol. 2022 , 206 , 355–362. [CrossRef] [PubMed] 49. Balea, A.; Monte, M.C.; Fuente, E.; Sanchez-Salvador, J.L.; Blanco, A.; Negro, C. Cellulose nanofibers and chitosan to remove flexographic inks from wastewaters. Environ. Sci. Water Res. Technol. 2019 , 5 , 1558–1567. [CrossRef] 50. Tayeb, A.H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose nanomaterials—Binding properties and applications: A review. Molecules 2018 , 23 , 2684. [CrossRef] 51. Hashemzehi, M.; Mesic, B.; Sjöstrand, B.; Naqvi, M. A Comprehensive Review of Nanocellulose Modification and Applications in Papermaking and Packaging: Challenges, Technical Solutions, and Perspectives. Bioresources 2022 , 17 , 3718–3780. [CrossRef] 52. SPER Market Research Pvt. Ltd. Nanocellulose Market Size-By Raw Material, by Product Type, by Application-Regional Outlook, Competitive Strategies and Segment Forecast to 2032. 2022. Available online: https://www.marketresearch.com/SPER-Market- Research-Pvt-Ltd-v4234/Nanocellulose-Size-Raw-Material-Product-34372094/ (accessed on 18 May 2023). 53. Wang, Q.; Yao, Q.; Liu, J.; Sun, J.; Zhu, Q.; Chen, H. Processing nanocellulose to bulk materials: A review. Cellulose 2019 , 26 , 7585–7617. [CrossRef] 54. Balea, A.; Blanco, A.; Delgado-Aguilar, M.; Monte, M.C.; Tarres, Q.; Mutj é , P.; Negro, C. Nanocellulose Characterization Challenges. Bioresources 2021 , 16 , 4382–4410. [CrossRef] 55. Brodin, F.W.; Eriksen, Ø. Preparation of individualised lignocellulose microfibrils based on thermomechanical pulp and their effect on paper properties. Nord. Pulp Pap. Res. J. 2015 , 30 , 443–451. [CrossRef] 56. Aguado, R.; Tarr é s,Q.; P è lach,M. À .;Mutj é , P.; de la Fuente, E.; Sanchez-Salvador, J.L.; Negro, C.; Delgado-Aguilar, M. Micro-and nanofibrillated cellulose from annual plant-sourced fibers: Comparison between enzymatic hydrolysis and mechanical refining. Nanomaterials 2022 , 12 , 1612. [CrossRef] [PubMed] 57. Malekzadeh, E.; Tatari, A.; Firouzabadi, M.D. Preparation, characteristics, and soil-biodegradable analysis of corn starch/nanofibrillated cellulose (CS/NFC) and corn starch/nanofibrillated lignocellulose (CS/NFLC) films. Carbohydr. Polym. 2023 , 309 , 120699. [CrossRef] [PubMed] 58. Osong, S.H.; Norgren, S.; Engstrand, P. Paper strength improvement by inclusion of nano-lignocellulose to Chemi- thermomechanical pulp. Nord. Pulp Pap. Res. J. 2014 , 29 , 309–316. [CrossRef] 59. Balea, A.; Sanchez-Salvador, J.L.; Monte, M.C.; Merayo, N.; Negro, C.; Blanco, A. In situ production and application of cellulose nanofibers to improve recycled paper production. Molecules 2019 , 24 , 1800. [CrossRef] [PubMed] 60. Kumar, V.; Pathak, P.; Bhardwaj, N.K. Waste paper: An underutilized but promising source for nanocellulose mining. Waste Manag. 2020 , 102 , 281–303. [CrossRef] 61. Janardhnan, S.; Sain, M. Bio-treatment of natural fibers in isolation of cellulose nanofibres: Impact of pre-refining of fibers on bio-treatment efficiency and nanofiber yield. J. Polym. Environ. 2011 , 19 , 615–621. [CrossRef] 62. Sanchez-Salvador, J.L.; Monte, M.C.; Batchelor, W.; Garnier, G.; Negro, C.; Blanco, A. Characterizing highly fibrillated nanocellu- lose by modifying the gel point methodology. Carbohydr. Polym. 2020 , 227 , 115340. [CrossRef] [PubMed] 63. Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011 , 3 , 71–85. [CrossRef] 64. Kuramae, R.; Saito, T.; Isogai, A. TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React. Funct. Polym. 2014 , 85 , 126–133. [CrossRef] 65. Filipova, I.; Serra, F.; Tarr é s, Q.; Mutj é , P.; Delgado-Aguilar, M. Oxidative treatments for cellulose nanofibers production: A comparative study between TEMPO-mediated and ammonium persulfate oxidation. Cellulose 2020 , 27 , 10671–10688. [CrossRef] 66. Park, J.Y.; Park, C.-W.; Han, S.-Y.; Kwon, G.-J.; Kim, N.-H.; Lee, S.-H. Effects of pH on nanofibrillation of TEMPO-oxidized paper mulberry bast fibers. Polymers 2019 , 11 , 414. [CrossRef] 67. TAPPI T 204 cm-17:2017 ; Solvent Extractives of Wood and Pulp. TAPPI: Peachtree Corners, GA, USA, 2017. 68. TAPPI T 211 om-16:2016 ; Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 Degrees C. TAPPI: Peachtree Corners, GA, USA, 2016. 69. NREL/TP-510-42618 ; Determination of Structural Carbohydrates and Lignin in Biomass. NREL: Golden, CO, USA, 2012. 70. Martin-Dominguez, V.; Garcia-Montalvo, J.; Garcia-Martin, A.; Ladero, M.; Santos, V.E. Fumaric Acid Production by R. arrhizus NRRL 1526 Using Apple Pomace Enzymatic Hydrolysates: Kinetic Modelling. Processes 2022 , 10 , 2624. [CrossRef]

Made with FlippingBook flipbook maker