PAPERmaking! Vol9 Nr3 2023

Nanomaterials 2023 , 13 , 1931

18of 19

71. Sanchez-Salvador, J.L.; Monte, M.C.; Negro, C.; Batchelor, W.; Garnier, G.; Blanco, A. Simplification of gel point characterization of cellulose nano and microfiber suspensions. Cellulose 2021 , 28 , 6995–7006. [CrossRef] 72. Sanchez-Salvador, J.L.; Campano, C.; Lopez-Exposito, P.; Tarr é s, Q.;Mutj é , P.; Delgado-Aguilar, M.; Monte, M.C.; Blanco, A. Enhanced Morphological Characterization of Cellulose Nano/Microfibers through Image Skeleton Analysis. Nanomaterials 2021 , 11 , 2077. [CrossRef] [PubMed] 73. Varanasi, S.; He, R.; Batchelor, W. Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 2013 , 20 , 1885–1896. [CrossRef] 74. Martinez, D.; Buckley, K.; Jivan, S.; Lindstrom, A.; Thiruvengadaswamy, R.; Olson, J.; Ruth, T.; Kerekes, R. Characterizing the mobility of papermaking fibres during sedimentation. In The Science of Papermaking: Transactions of the 12th Fundamental Research Symposium, Oxford ; The Pulp and Paper Fundamental Research Society: Bury, UK, 2001; pp. 225–254. 75. Campano, C.; Balea, A.; Blanco, Á .; Negro, C. A reproducible method to characterize the bulk morphology of cellulose nanocrystals and nanofibers by transmission electron microscopy. Cellulose 2020 , 27 , 4871–4887. [CrossRef] 76. Xu, H.; Sanchez-Salvador, J.L.; Balea, A.; Blanco, A.; Negro, C. Optimization of reagent consumption in TEMPO-mediated oxidation of Eucalyptus cellulose to obtain cellulose nanofibers. Cellulose 2022 , 29 , 6611–6627. [CrossRef] 77. ISO 5263-3:2023 ; Pulps—Laboratory Wet Disintegration—Part 3: Disintegration of Mechanical Pulps at >85 ◦ C. ISO: Geneva, Switzerland, 2023. 78. ISO 5269-2:2004 ; Pulps—Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Köthen Method. ISO: Geneva, Switzerland, 2004. 79. ISO 187:2022 ; Paper, Board and Pulps—Standard Atmosphere for Conditioning and Testing and Procedure for Monitoring the Atmosphere and Conditioning of Samples. ISO: Geneva, Switzerland, 2022. 80. ISO 536:2019 ; Paper and Board—Determination of Grammage. ISO: Geneva, Switzerland, 2019. 81. ISO 534:2011 ; Paper and Board—Determination of Thickness, Density and Specific Volume. ISO: Geneva, Switzerland, 2011. 82. ISO 5636-3:2013 ; Paper and Board—Determination of Air Permeance (Medium Range)—Part 3: Bendtsen Method. ISO: Geneva, Switzerland, 2013. 83. ISO 1924-3:2005 ; Paper and Board—Determination of Tensile Properties—Part 3: Constant Rate of Elongation Method (100 mm/min). ISO: Geneva, Switzerland, 2005. 84. ISO 3781:2011 ; Paper and Board—Determination of Tensile Strength after Immersion in Water. ISO: Geneva, Switzerland, 2011. 85. ISO 9895:2008 ; Paper and Board—Compressive Strength—Short-Span Test. ISO: Geneva, Switzerland, 2008. 86. ISO 1974:2012 ; Paper—Determination of Tearing Resistance—Elmendorf Method. ISO: Geneva, Switzerland, 2012. 87. Han, J.S.; Jung, S.Y.; Kang, D.S.; Seo, Y.B. Development of flexible calcium carbonate for papermaking filler. ACS Sustain. Chem. Eng. 2020 , 8 , 8994–9001. [CrossRef] 88. Wang, L.; Zhao, Z.; Zhao, H.; Liu, M.; Lin, C.; Li, L.; Ma, B. Pectin polysaccharide from Flos Magnoliae (Xin Yi, Magnolia biondii Pamp. flower buds): Hot-compressed water extraction, purification and partial structural characterization. Food Hydrocoll. 2022 , 122 , 107061. [CrossRef] 89. Sanchez-Salvador, J.L.; Campano, C.; Negro, C.; Monte, M.C.; Blanco, A. Increasing the Possibilities of TEMPO-Mediated Oxidation in the Production of Cellulose Nanofibers by Reducing the Reaction Time and Reusing the Reaction Medium. Adv. Sustain. Syst. 2021 , 5 , 2000277. [CrossRef] 90. Ma, P.; Fu, S.; Zhai, H.; Law, K.; Daneault, C. Influence of TEMPO-mediated oxidation on the lignin of thermomechanical pulp. Bioresour. Technol 2012 , 118 , 607–610. [CrossRef] 91. Hsieh, M.-C.; Koga, H.; Suganuma, K.; Nogi, M. Hazy transparent cellulose nanopaper. Sci. Rep. 2017 , 7 , 41590. [CrossRef] [PubMed] 92. Sanchez-Salvador, J.L.; Campano, C.; Balea, A.; Tarr é s, Q.; Delgado-Aguilar, M.; Mutj é , P.; Blanco, A.; Negro, C. Critical comparison of the properties of cellulose nanofibers produced from softwood and hardwood through enzymatic, chemical and mechanical processes. Int. J. Biol. Macromol. 2022 , 205 , 220–230. [CrossRef] 93. Iwamoto, S.; Lee, S.-H.; Endo, T. Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym. J. 2014 , 46 , 73–76. [CrossRef] 94. Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012 , 90 , 735–764. [CrossRef] [PubMed] 95. Nair, S.S.; Zhu, J.; Deng, Y.; Ragauskas, A.J. High performance green barriers based on nanocellulose. Sustain. Chem. Process. 2014 , 2 , 1–7. [CrossRef] 96. Pego, M.F.F.; Bianchi, M.L.; Yasumura, P.K. Nanocellulose reinforcement in paper produced from fiber blending. Wood Sci. Technol. 2020 , 54 , 1587–1603. [CrossRef] 97. Gonz á lez Tovar, I.; Alcal à Vilavella, M.; Chinga Carrasco, G.; Vilaseca Morera, F.; Boufi, S.; Mutj é Pujol, P. From paper to nanopaper: Evolution of mechanical and physical properties. Cellulose 2014 , 21 , 2599–2609. [CrossRef] 98. Sun, X.; Wu, Q.; Zhang, X.; Ren, S.; Lei, T.; Li, W.; Xu, G.; Zhang, Q. Nanocellulose films with combined cellulose nanofibers and nanocrystals: Tailored thermal, optical and mechanical properties. Cellulose 2018 , 25 , 1103–1115. [CrossRef] 99. Lindström, T.; Wågberg, L.; Larsson, T. On the nature of joint strength in paper-A review of dry and wet strength resins used in paper manufacturing. In Proceedings of the 13th Fundamental Research Symposium, Cambridge, UK, 11–16 September 2005; pp. 457–562.

Made with FlippingBook flipbook maker