bioresources. com
PEER-REVIEWED REVIEW ARTICLE
GB 4806.8-2016 (2016). “National food safety standard – Paper and paper board food contact materials and articl e,” Standardization Administration of China, Beijing, China. GB 9685- 2016 (2016). “National food safety standard: Standard for the use of additives in food contact materials and article s,” Standardization Administration of China, Beijing, China. Gilbert, M. (2017). “ Cellulose Plastics, ” in: Brydson’s Plastic Materials , 8 th edition , M. Gilbert (ed.), Elsevier, 617-629. Golden, J. S., and Handfield, R. B. (2014). Opportunities in the Emerging Bioeconomy , US Department of Agriculture, Office of Procurement and Property Management, Washington, DC, USA, (http://www. biopreferred. gov/files/WhyBiobased. pdf). Gordobil, O., Egüés, I., Llano-Ponte, R., and Labidi, J. (2014). “ Physicochemical properties of PLA lignin blends,” Polymer Degradation and Stability 108, 330-338. DOI: 10.1016/j.polymdegradstab.2014.01.002 Gorrasi, G., Pantani, R., Murariu, M., and Dubois, P. (2014). “ PLA/halloysite nanocomposite films: Water vapor barrier properties a nd specific key characteristics,” Macromolecular Materials and Engineering 299(1), 104-115. DOI: 10.1002/mame.201200424 Gorrasi, G., Vittoria, V., Murariu, M., Ferreira, A. D. S., Alexandre, M., and Dubois, P. (2008). “ Effect of filler content and size on transport properties of water vapor in PLA/calcium sulfate composites,” Biomacromolecules 9(3), 984-990. DOI: 10.1021/bm700568n Granström, M. (2009). Cellulose Derivatives: Synthesis, Properties and Applications , Dissertation, University of Helsinki, 2009. ISBN 978-952-10-5485-3. Greene, J. P. (2014). Sustainable Plastics: Environmental Assessments of Biobased, Biodegradable, and Recycled Plastics , Wiley . DOI: 10.1002/9781118899595 Grunert, M., and Winter, W. T. (2002). “ Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystal s,” Journal of Polymers and the Environment 10(1-2), 27-30. DOI: 10.1023/A:1021065905986 Gröndahl, M., and Bindgård, L. (2014). “ Xylan-based barrier coating for packaging, ” in: Handbook of Green Materials , World Scientific Publishing Company, Chapter 5, 67- 76. DOI: 10.1142/9789814566469_0005 Gröndahl, M., Eriksson, L., and Gatenholm, P. (2004). “ Material properties of plasticized hardwood xylans for potential appl ication as oxygen barrier films,” Biomacromolecules 5(4), 1528-1535. DOI: 10.1021/bm049925n Grönman, K., Soukka, R., Järvi Ǧ Kääriäinen, T., Katajajuuri, J. M., Kuisma, M., Koivupuro, H. K., Ollilala, M., Pitkänen, M., Miettinen, O., Silvenius, F., Thun, R., Wessman, H., and Linnanen, L. (2013). “ Framework for sustainable food packaging design,” Packaging Technology and Science 26(4), 187-200. DOI: 10.1002/pts.1971 Gullichsen, J. (2000). “Fiber line operations,” Chemical Pulping , 6, A119. Guo, J. (2017). Covalent Modification of Nanocellulose Towards Advanced Functional Materials , Doctoral dissertation, Aalto University, Department of Bioproducts and Biosystems, Helsinki, 98, p. ISBN 978-952-60-7490-0. Guo, J., Filpponen, I., Johansson, L.- S., Heiβler , S., Li, L., Levkin, P., and Rojas, O. J. (2018). “Micro -patterns on nanocellulose films and paper by photo-induced thiol-yne click coupling: A facile method toward wetting with spatial resolution,” Cellulose 25, 367-375. DOI: 10.1007/s10570-017-1593-2
39
Helanto et al. (2019). “ Bio-based barriers ,” B io R esources 14(2), Pg #s to be added.
Made with FlippingBook - Online catalogs