PAPERmaking! Vol5 Nr2 2019

bioresources. com

PEER-REVIEWED REVIEW ARTICLE

Leminen, V., Ovaska, S. S. C., Tanninen, P., and Varis, J. (2015). “ Convertability and oil resistance of paperboard with hydroxypropyl-cellulose-based dispersion barrier coatings ,” Journal of Applied Packaging Research 7(3), 91-100. Li, S., Xie, W., Wilt, M., Willoughby, J. A., and Rojas, O. J. (2018). “Thermally stable and tough coatings and films using vinyl silylated lignin,” ACS Sustainable Chemistry & Engineering 6(2), 1988-1998. DOI: 10.1021/acssuschemeng.7b03387 Lin, N., Yu, J., Chang, P. R., Li, J., and Huang, J. (2011). “ Poly(butylene succinate) Ǧ based biocomposites filled with polysaccharide nanocrystals: Structure and properties,” Polymer Composites 32(3), 472-482. DOI: 10.1002/pc.21066 Lindström, T., and Aulin, C. (2014). “ Market and technical challenges and opportunities in the area of innovative new materials and comp osites based on nanocellulosics,” Scandinavian Journal of Forest Research 29(4), 345-351. DOI: 10.1080/02827581.2014.928365 Liu, H., Liu, C., Peng, S., Pan, B., and Lu, C. (2018). “E ơ ect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite film,” Carbohydrate Polymers 182 52-60. DOI: 10.1016/j.carbpol.2017.11.008 Liu, L. (2006). “ Bioplastics in food packaging: Innovative technologies for biodegradable packaging,” San Jose State University Packaging Engineering , 13. Liu, L., Yu, J., Cheng, L., and Yang, X. (2009). “ Biodegradability of poly (butylene succinate)(PBS) compo site reinforced with jute fibre,” Polymer Degradation and Stability 94(1), 90-94. DOI: 10.1016/j.polymdegradstab.2008.10.013 Mahadevajah, Shivakumara, L. R., Demappa, T., Singh, V. (2016). “ Mechanical and barrier properties of hydroxypropyl methyl cellulose edible polymer films with plasticizer combinations ,” Journal of Food Processing and Preservation 1745-4549. Mazhari Mousavi, S. M. Afra, E., Tajvidi, M., Bousfield, D. W., and Dehghani- Firouzabadi, M. (2017). “ Cellulose nanofiber/carboxymethyl cellulose blends as an efficient coating to improve the structure and barrier properties of paperboard ,” Cellulose 24, 3001-3014. DOI: 10.1007/s10570-017-1299-5 McKinlay, J. B., Vieille, C., and Zeikus, J. G. (2007). “ Prospects for a bio-based succinate industry,” Applied Microbiology and Biotechnology 76(4), 727-740. DOI: 10.1007/s00253-007-1057-y Mikkonen, K. S., and Tenkanen, M. (2012). “Sustainable food -packaging materials based on future biorefinery products: Xylans and mannans,” Trends in Food Science and Technology 28(2), 90-102. DOI: 10.1016/j.tifs.2012.06.012 Mikkonen, K. S., Laine, C., Kontro, I., Talja, R. A., Serimaa, R., and Tenkanen, M. (2015). “Combination of internal and external plasticization of hydroxypropylated birch xylan tailors the properties of sustainable barrier films,” European Polymer Journal 66, 307-318. DOI: 10.1016/j.eurpolymj.2015.02.034 Mikkonen, K. S., Yadav, M. P., Cooke, P., Willför, S., Hicks, K. B., and Tenkanen, M. (2008). “ Films from spruce galactoglucomannan blended with poly (vinyl alcohol), corn arabinoxylan, and konjac glucom annan,” BioResources 3(1), 178-191. Miranda, C. S., Ferreira, M. S., Magalhães, M. T., Santos, W. J., Oliveira, J. C., Silva, J. B., and José, N. M. (2015). “ Mechanical, thermal and barrier properties of starch- based films plasticized with glycerol and lignin and reinforced with cellulose nanocrystals,” Materials Today: Proceedings 2(1), 63-69. DOI: 10.1016/j.matpr.2015.04.009

43

Helanto et al. (2019). “ Bio-based barriers ,” B io R esources 14(2), Pg #s to be added.

Made with FlippingBook - Online catalogs