bioresources. com
PEER-REVIEWED REVIEW ARTICLE
Bio-based Polymers for Sustainable Packaging and Biobarriers: A Critical Review Karoliina Helanto, a,b, * Lauri Matikainen, a Riku Talja, b and Orlando J. Rojas a
Barrier materials have an important role in various packaging applications, especially considering the requirements associated with protection and shelf life. Most barrier materials used in today’s industry are either manufactured from oil resources or metals. Driven by the increase in environmental awareness, access to oil resources as well as legislation, new and environmentally benign alternatives are at the center stage of scientific and industrial interest. This article covers the use of wood-derived polymers and those produced from microorganisms, which display remarkable barrier properties. Wood-based products have received great attention for their air/oxygen resistance. As far as their properties, microorganism-derived biopolymers are comparable to conventional oil-based thermoplastics, but their cost may still be an issue. Both, wood and microorganism-derived biopolymers are challenged when moisture, grease and oxygen resistance are simultaneously required. Hence, multilayer structures and composites are needed to fulfill the most demanding requirements of packaging materials. Here we offer a review of these topics together with a discussion of their prospects.
Keywords: Biopolymer; Packaging; Barrier Contact information: a: Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland; b: Metsä Board Corporation, P.O. Box 20, FI-02020 Metsä, Finland; *Corresponding author: karoliina.helanto@aalto.fi INTRODUCTION TO BIOBARRIER MATERIALS Bio-based and biodegradable packaging materials have gained increased global attention. Among the drivers towards more sustainable packaging materials, the following ones stand out: growing environmental awareness (Andersson 2008; Mousavioun et al. 2010; Hermann et al. 2011; Philp et al. 2013), waste management and landfilling (Andersson 2008; Hermann et al. 2011; Johansson et al. 2012; Philp et al. 2013; Khan et al. 2014), resource insufficiency (Andersson 2008; Wu et al. 2009; Chung et al. 2013), the accumulation of plastics in the ocean (Philp et al. 2013), waste legislations, producer and consumer accountability (Andersson 2008), the need to reduce energy consumption (Mousavioun et al. 2010), and marketing trends (Weber 2000; Khan et al. 2014). In fact, compared to those sourced from fossil carbon, the use of bio-based polymers represents a solution that can effectively benefit from the above pressures, mainly owing to their sustainability, biodegradability, biocompatibility, availability, and non-toxicity (Rastogi and Samyn 2015); in addition, they bring about a possible reduction in overall carbon footprint (Greene 2014). While the packaging industry is focusing on creating lighter products, to reduce raw material use, transportation costs, and waste volumes (Johansson et al. 2012; Vartiainen et al. 2014), consumers and producers are focusing on recyclable,
1
Helanto et al. (2019). “ Bio-based barriers ,” B io R esources 14(2), Pg #s to be added.
Made with FlippingBook - Online catalogs