PAPERmaking! Vol7 Nr3 2021

Cellulose

Hamaker HC (1937) The London—van der Waals attraction between spherical particles. Physica 4:1058–1072 Ham JT, Williams DG (1970) The crystal and molecular structure of methyl b -cellobioside-methanol. Acta Cryst B 26:1373–1383 Hansen HS, Hu¨nenberger PH (2010) A Reoptimized GROMOS Force Field for Hexopyranose-Based Carbohydrates Accounting for the Relative Free Energies of Ring Con- formers, Anomers, Epimers, Hydroxymethyl Rotamers, and Glycosidic Linkage Conformations. J Comput Chem 32:998–1032 Hayakawa D, Nishiyama Y, Mazeau K, Ueda K (2017) Evalu- ation of hydrogen bond networks in cellulose I b and II crystals using density functional theory and Car–Parrinello molecular dynamics. Carbohydr Res 449:103–113 Heiner AP, Kuutti L, Teleman O (1998) Comparison of the interface between water and four surfaces of native crys- talline cellulose by molecular dynamics simulations. Car- bohyrd Res 306:205–220 Heiner AP, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity. Langmuir 13:511–518 Henriksson M, Berglund LA, Isaksson P, Lindstro¨m T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585 Hinterstoisser B, Salme´n L (1999) Two-dimensional step-scan FTIR: a tool to unravel the OH-valency-range of the spectrum of Cellulose I. Cellulose 6:251–263 Hirn U, Schennach R (2017) ‘‘Fiber-fiber bond fromation and failure: Mechanisms and analytical techniques.’’ Pp. 839- 863 in 16th Fundamental Research Symposium . Cambridge Hou Y, Guan Q-F, Xia J, Ling Z-C, He Z, Han Z-M, Yang H-B, Gu P, Zhu Y, Yu S-H, Wu H (2021) Strengthening and toughening hierarchical nanocellulose via humidity-me- diated interface. ACS Nano 15:1310–1320 Isaacs ED, Shukla A, Platzman PM, Hamann DR, Barbiellini B, Tulk CA (1999) Covalency of the hydrogen bond in ice: a direct X-ray measurement. Phys Rev Lett 82:600–603 Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, III and IV. Polymer 38:463–468 Jarvis MC (2018) Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos Trans R Soc A Math Phys Eng Sci 376:20170045 Jeffrey GA, Saenger W (1994) Hydrogen Bonding in Biological Structures. Springer-Verlag, Heidelberg Johansson E, Blomberg E, Lingstro¨m R, Wa˚gberg L (2009) Adhesive interaction between polyelectrolyte multilayers of polyallylamine hydrochloride and polyacrylic acid studied using atomic force microscopy and surface force apparatus. Langmuir 25:2887–2894 Karna NK, Wohlert J, Lide´n A, Mattsson T, Theliander H (2020) Wettabiity of cellulose surfaces under the influence of an external electric field. J Colloid Interface Sci Prepare 589:347–355 Kharlampieva E, Kozlovskaya V, Sukhishvili SA (2009) Layer- by-layer hydrogen-bonded polymer films: From funda- mentals to applications. Adv Mater 21:3053–3065

Kirshner Karl N, Woods Robert J (2001) Solvent Interactions Determine Carbohydrate Conformation. Proc Natl Acad Sci 98:10541–10545 Kishani S, Benselfelt T, Wa˚gberg L, Wohlert J (2021) Entropy drives the adsorption of xyloglucan to cellulose surfaces - A molecular dynamics study. J Colloid Interface Sci 588:485–493 Kong K, Eichhorn SJ (2005) The influence of hydrogen bonding on the deformation micromechanics of cellulose fibers. J Macromol Sci Phys 44:1123–1136 Kontturi KS, Lee K-Y, Sampson JMP, Bismarck WW, Kontturi E (2021) Influence of bilogical origin on the tensile prop- erties of cellulose nanopapers. Cellulose 28:6619–6628 Kovalenko VI (2010) Crystalline cellulose: structure and hydrogen bonds. Russ Chem Rev 79:231 Kroon-Batenburg LMJ, Kroon J, Leeflang BR, Vliegenthart JFG (1993) Conformational analysis of methyl b -cellobioside by ROESY NMR spectroscopy and MD simulations in combination with the CROSREL method. Carbohydr Res 245:21–42 Kroon-Batenburg LMJ, Kruiskamp PH, Vliegenthart JFG, Kroon J (1997) Estimation of the persistence length of polymers by MD simulations on small fragments in solu- tion. Application to cellulose. J Phys Chem B 101:8454–8459 Kuribayashi T, Ogawa Y, Rochas C, Matsumoto Y, Heux L, Nishiyama Y (2016) Hydrothermal Transformation of Wood Cellulose Crystals into Pseudo-Orthorombic Struc- ture by Cocrystallization. ACS Macro Lett 5:730–734 Langan P, Nishiyama Y, Chanzy H (1999) A Revised Structure and Hydrogen-Bonding System in Cellulose II from Neu- tron Fiber Diffraction Analysis. J Am Chem Soc 121:9940–9946 Langan P, Nishiyama Y, Chanzy H (2001) X-ray Structure of Mercerized Cellulose at 1 A˚ Resolution. Biomacro- molecules 2:410–416 Langan P, Petridis L, O’Neill HM, Singali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban V, Evans BR, Gnanakaran S, Ragauskas AJ, Smith JC, Davison BH (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68 Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015) Hydrogen-bonding network and OH stretch vibra- tion of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149 Lindh EL, Bergenstra˚hle-Wohlert M, Terenzi C, Salme´n L, Furo´ I (2016) Non-exchanging hydroxyl groups on the surface of cellulose fibrils: The role of interaction with water. Car- bohydr Res 434:136–142 Lindh EL, Terenzi C, Salme´n L, Furo´ I (2017) Water in cellu- lose: evidence and identification of immobile and mobile adsorbed phases by 2H MAS NMR. Phys Chem Chem Phys 19:4360–4369 Lindman B, Medronho B, Alves L, Norgren M, Nordenskio¨ld L (2021) Hydrophobic interactions control the self-assembly of DNA and cellulose. Q Rev Biophys 54:1–22 Lindstro¨m T, Wa˚gberg L, Larsson T (2005) ‘‘On the nature of joint strength in paper - A review of dry and wet strength

123

Made with FlippingBook Online document maker