PAPERmaking! Vol7 Nr3 2021

Cellulose

resins used in paper manufacturing.’’ Pp. 457-562 in 13th Fundamental Research Symposium. Cambridge Ling Z, Edwards JV, Nam S, Xu F, French AD (2020) Con- formational analysis of xylobiose by DFT quantum mechanics. Cellulose 27:1207–1224 Li H, Roth SV, Freychet G, Zhernenkov M, Asta N, Wa˚gberg L, Pettersson T (2021) Structure development of the inter- phase between drying cellulose materials revealed by in situ grazing-incidence small-angle X-ray scattering. Biomacromolecules 22:4274–4283 Lombardo S, Chen P, Larsson PA, Thielemans W, Wohlert J, Svagan AJ (2018) Toward improved understanding of the interactions between poorly soluble drugs and cellulose nanofibers. Langmuir 34:5464–5473 Lombardo S, Thielemans W (2019) Thermodynamics of adsorption on cellulose surfaces. Cellulose 26:249–279 Lopez M, Bizot H, Chambat G, Marais M-F, Zykwinska A, Ralet M-C, Driguez H, Bule´on A (2010) Enthalpic Studies of Xyloglucan–Cellulose Interactions. Biomacromolecules 11:1417–1428 Luzar A (2000) Resolving the hydrogen bond dynamics conundrum. J Chem Phys 113:10663 Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775–2825 Martinez-Abad A, Berglund J, Toriz G, Gatenholm P, Hen- riksson G, Lindstro¨m M, Wohlert J, Vilaplana F (2017) Regular motifs in xylan modulate molecular flexibility and interactions with cellulose surfaces. Plant Physiol 175:1579–1592 Martinez-Abad A, Jime´nez-Quero A, Wohlert J, Vilaplana F (2020) Influence of the molecular motifs of mannan and xylan populations on their recalcitrance and organization in spruce softwoods. Green Chem 22:3956–3970 Matthews JF, Beckham GT, Bergenstra˚hle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of Cellulose I b Simulations with Three Carbohydrate Force Fields. J Chem Theory Comput 8:735–748 Matthews JF, Bergenstra˚hle M, Beckham GT, Himmel ME, Nimlos MN, Brady JW, Crowley MF (2011) High-Tem- perature Behavior of Cellulose I. J Phys Chem B 115:2155–2166 Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellu- lose. J Phys Chem B 107:2394–2403 Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing Cellulose (In)solubility: Reviewing Basic Physicochemical Aspects and Role of Hydrophobic Interactions. Cellulose 19:581–587 Meng Q, Li B, Li T, FEng X-Q (2017) A multiscale crack- bridging model of cellulose nanopaper. J Mech Phys Solids 103:22–39 Meng Q, Wang TJ (2019) Mechanics of strong and tough cel- lulose nanopaper. Appl Mech Rev 71:040801 Michaels AS (1965) Polyelectrolyte complexes. Ind Eng Chem 57:32–40 Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994 Moser C, Henriksson G, Lindstro¨m ME (2018) Improved dis- persibility of once-dried cellulose nanofibers in the pres- ence of glycerol. Nord Pulp Paper Res J 33:647–650

Nilsson B, Wa˚gberg L, Gray D (2001) ‘‘Conformability of wet pulp fibres at short lentgh scales.’’ In: CF Baker (eds), The science of papermaking. Oxford, UK Nishino T, Takano K, Nakamae K (1995) Elastic Modulus of the Crystalline Regions of Cellulose Polymorphs. J Polym Sci Part B, Polym Phys Ed 33:1647–1651 Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249 Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc A 376:20170047 Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron Crystallography, Molecular Dynamics, and Quantum Mechanics Studies of the Nature of Hydro- gen Bonding in Cellulose Ibeta. Biomacromolecules 9:3133–3140 Nishiyama Y, Langan P, Chanzy H (2002) Crystal Structure and Hydrogen-Bonding System in Cellulose I b from Syn- chrotron X-ray and Neutron Fiber Diffraction. J Am Chem Soc 124:9074–9082 Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal Structure and Hydrogen Bonding System in Cellulose I a from Synchrotron X-ray and Neutron Fiber Diffraction. J Am Chem Soc 125:14300–14306 Nissan AH (1955) A molecular approach to the problem of viscoelasticity. Nature 174:424 Nissan AH (1976a) Bond dissociation in hydrogen bond domi- nated solids. Macromolecules 9:840–850 Nissan AH (1976b) Three modes of dissociation of H bonds in hydrogen-bond dominated solids. Nature 263:759 Nissan AH, Batten GL Jr (1997) The link between the molecular and structural theories of paper elasticity. Tappi J 80:153 Nobles DR, Romanovicz DK, Brown RM (2001) Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127:529–542 Nodenstro¨m M (2020) ‘‘Colloidal interactions and arrested dynamics of cellulose nanofibrils.’’ PhD Thesis, KTH Royal Institute of Technology, Stockholm, Sweden Nova A, Keten S, Pugno NM, Redaelli A, Beuhler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10:2626–2634 Ogawa Y, Nishiyama Y, Mazeau K (2020) Drying-induced bending deformation of cellulose nanocrystals studied by molecular dynamics simulations. Cellulose 27:9779–9786 O’Neill H, Pingali SV, Petridis L, He J, Mamontov E, Hong L, Urban V, Evans B, Langan P, Smith JC, Davison BH (2017) Dynamics of water bound to crystalline cellulose. Sci Rep 7:11840 Paajanen A, Ceccherini S, Maloney T, Ketoja JA (2019) Chi- rality and bound water in the hierarchical cellulose struc- ture. Cellulose 26:5877–5892 Page DH (1965) A theory for the elastic modulus of paper. Brit J Appl Phys 16:253–258 Pandey SK, Manogaran D, Manogaran S, Shaefer HF III (2017) Quantification of hydrogen bond strength based on inter- action coordinates: a new approach. J Phys Chem A 121:6090–6103 Paradez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrate functional association with microtubules. Science 312:1491–1495

123

Made with FlippingBook Online document maker