Cellulose
Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaca, NY Pauling L, Corey RB (1951) Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc Natl Acad Sci USA 37:729–740 Pauling L, Corey RB, Branson HR (1951) The structure of proteins. Two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205–211 Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102 Pereira CS, Silveira RL, Dupree P, Skaf MS (2017) Effects of xylan side-chain substitutions on xylan–cellulose interac- tions and implications for thermal pretreatment of cellu- losic biomass. Biomacromolecules 18:1311–1321 Peterson SW, Levy HA (1957) A single-crystal neutron diffraction study of heavy ice. Acta Cryst 10:70–76 Ponyi T, Szabo´ L, Nagy T, Orosz L, Simpson PJ, Williamson MP, Gilbert HJ (2000) Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose- binding module from Pseudomonas xylanase A to insol- uble ligands ? . Biochemistry 39:985–991 Posada P, Vela´squez-Cock J, Go´mez-Hoyos C, Serpa Guerra AM, Lyulin SV, Kenny JM, Gan˜a´n P, Zuluaga R (2020) Drying and redispersion of plant cellulose nanofibers for industrial applications: a review. Cellulose 27:10649–10670 Qian X (2008) The effect of cooperativity on hydrogen bonding interactions in native cellulose I b from ab initio molecular dynamics simulations. Mol Sim 34:183–191 Raschke TM, Levitt M (2005) Nonpolar solutes enhance water structure within hydration shells while reducing interac- tions between them. Proc Natl Acad Sci 102:6777–6782 Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264 Saito T, Nishiyama Y, Puteaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of indiviualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691 Sakurada I, Nukushina Y, Ito T (1962) Experimental Determi- nation of Elastic Modulus of Crystalline Regions in Ori- ented Polymers. J Polym Sci 57:651–660 Santiago Cintro´n M, Johnson GP, French AD (2011) Young’s modulus calculations for cellulose I b by MM3 and quan- tum mechanics. Cellulose 18:505–516 Santiago Cintro´n M, Johnson GP, French AD (2017) Quantum mechanics models of the methanol dimer: O-H _ O hydrogen bonds of b -D-glucose moieties from crystallo- graphic data. Carbohydr Res 443–444:87–94 Sassi J-F, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127 Shahi A, Arunan E (2014) Hydrogen bonding, halogen bonding and lithium bonding: an atoms in molecules and natural bond orbital perspective towards conservation of total bond order, inter- and intra-molecular bonding. Phys Chem Chem Phys 16:22935–22952 Shibazaki H, Saito M, Kuga S, Okano T (1998) Native cellulose II production by Acetobacter xylinum under physical con- straints. Cellulose 5:165–173
Simmons TJ, Mortimer JC, Bernardinelli OD, Po¨ppler A-C, Brown SP, deAzevedo E R, Dupree R, Dupree P (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Commun 7:13902 Sinko R, Keten S (2014) Effect of moisture on the traction- separation behavior of cellulose nanocrystal interfaces. Appl Phys Lett 105:243702 Sto¨ckmann VE (1972) Developing a hypothesis: Native cellu- lose elementary fibrils are formed with metastable struc- ture. Biopolymers 11:251–270 Stobe AJ (2017) Natural bond orbitals and the nature of the hydrogen bond. J Phys Chem A 121:1531–1534 Stone AJ, Szalewicz K (2018) Reply to ‘‘Comment on ‘Natural bond orbitals and the nature of the hydrogen bond’’’. J Phys Chem A 122:733–736 Strati GL, Willet JL, Momany FA (2002) Ab initio computa- tional study of b -cellobiose conformers using B3LYP/6- 311 ?? G**. Carbohydr Res 337:1833–1849 Stuart MC, Fleer G (1996) Adsorbed polymers in nonequilib- rium situations. Annu Rev Mater Sci 26:463–500 Terenzi C, Prakobna K, Berglund LA, Furo´ I (2015) Nanos- tructural Effects on Polymer and Water Dynamics in Cel- lulose Biocomposites: 2H and 13 C NMR Relaxometry. Biomacromolecules 16:1506–1515 Thomas LH, Forsyth VT, Martel A, Grillo I, Altaner CM, Jarvis MC (2015) Diffraction evidence for the structure of cel- lulose microfibrils in bamboo, a model for grass and cereal celluloses. BMC Plant Biol 15:153 Thomas LH, Martel A, Grillo I, Jarvis MC (2020) Hemicellulose binding and the spacing of cellulose microfibrils in spruce wood. Cellulose. https://doi.org/10.1007/s10570-020- 03091-z Truhlar DG (2019) Dispersion forces: neither fluctuating nor dispersiing. J Chem Educ 96:1671–1675 Tsekos I (1999) The sites of cellulose sythesis in algae: diversity and evolution of cellulose-sythesizing enzyme complexes. J Phycol 35:635–655 Tsuchida E, Abe K (1982) Interactions between macro- molecules in solution and intermacromolecular complexes. Springer, Berlin, Heidelberg Wada M, Chanzy H, Nishiyama Y, Langan P (2004a) Celluluse IIII Crystal Structure and Hydrogen Bonding by Syn- chotron X-ray and Neutron Fiber Diffraction. Macro- molecules 37:8548–8555 Wada M, Heux L, Sugiyama J (2004b) Polymorphism of Cel- lulose I Family: Reinvestigation of Cellulose IVI. Biomacromolecules 5:1385–1391 Wang D, A´ mundado´ttir ML, van Gunsteren WF, Hu¨nenberger PH (2013) Intramolecular hydrogen-bonding in aqueous carbohydrates as a cause or consequence of conformational preferences: a molecular dynamics study of cellobiose stereoisomers. Eur Biophys J 42:521–537 Wang X, Pang Z, Chen C, Xia Q, Zhou Y, Jing S, Wang R, Ray U, Gan W, LI C, Chen G, Foster B, Li T, Hu L (2020) All- natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers. Adv Funct Mater 30:1910417 Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738
123
Made with FlippingBook Online document maker