PAPERmaking! Vol7 Nr3 2021

16

LINDBERG AND KULACHENKO

Manuf . 2017;102:207-217. https://doi.org/10.1016/j.compositesa. 2017.08.007 28. Suhling J, Rowlands R, Johnson M, Gunderson D. Tensorial strength analysis of paperboard. Experimental Mechanics . 1985;25(1):75-84. https://doi.org/10.1007/Bf02329129 29. Tsai SW. A survey of macroscopic failure criteria for composite mate- rials. Journal of Reinforced Plastics and Composites . 1984;3(1):40-62. https://doi.org/10.1177/073168448400300102 30. Fellers C, Westerlind B, De Ruvo A. An investigation of the biaxial failure envelope of paper – experimental study and theoretical analy- sis. In: Proceedings of Fundamental Research Symposium . Cambridge; 1983. 31. Wallmeier M, Hauptmann M, Majschak JP. New methods for quality analysis of deep-drawn packaging components from paperboard. Packaging Technology and Science . 2015;28(2):91-100. https://doi. org/10.1002/pts.2091 32. Tanninen P, Leminen V, Pesonen A, Matthews S, Varis J. Surface Fracture Prevention in Paperboard Press Forming with Advanced Force Control. Procedia Manufacturing . 2020;47:80-84. https://doi. org/10.1016/j.promfg.2020.04.140 33. Brandberg A, Motamedian HR, Kulachenko A, Hirn U. The role of the fiber and the bond in the hygroexpansion and curl of thin freely dried paper sheets. International Journal of Solids and Structures . 2020;193: 302-313. https://doi.org/10.1016/j.ijsolstr.2020.02.033 34. Huttel D, Groche P, May A, Euler M. Friction measurement device for fiber material forming processes. In: Advanced Materials Research . Vol. 966-967. Trans Tech Publ; 2014:65-79. 35. Lenske A, Müller T, Penter L, Schneider M, Hauptmann M, Majschak J-P. Evaluating the factors influencing the friction behavior of paperboard during the deep drawing process. BioResources . 2017; 12(4):8340-8358. 36. Hagman A, Nygårds M. Investigation of sample-size effects on in- plane tensile testing of paperboard. Nordic Pulp & Paper Research Jour- nal . 2012;27(2):295-304. https://doi.org/10.3183/NPPRJ-2012-27- 02-p295-304 37. Hristopulos DT, Uesaka T. Structural disorder effects on the tensile strength distribution of heterogeneous brittle materials with empha- sis on fiber networks. Physical Review B . 2004;70(6):064108. https:// doi.org/10.1103/PhysRevB.70.064108 38. Mukherjee S, Ganguli R, Gopalakrishnan S, Cot LD, Bes C. Ply level uncertainty effects on failure of composite structures. In: EWSHM- 7th European Workshop on Structural Health Monitoring ; 2014 URL: https://hal.inria.fr/hal-01021047 39. Alzweighi M, Mansour R, Lahti J, Hirn U, Kulachenko A. The influence of structural variations on the constitutive response and strain varia- tions in thin fibrous materials. ActaMater . 2021;203:116460. 40. Franke W, Leminen V, Groche P, Varis J. The effects of pretreatment and coating on the formability of extrusion-coated multilayer paperboard – plastic composites. Packaging Technology and Science . 2021;34(2):105-116.

10. Lowe A, Nikowski A, Hauptmann M. Functional Design of Sonotrodes for Deep-drawing of Cardboard. BioResources . 2020;15(2): 2763-2773. https://doi.org/10.15376/biores.15.2.2763-2773 11. Didone M, Saxena P, Brilhuis-Meijer E, et al. Moulded pulp manufacturing: Overview and prospects for the process technology. Packaging Technology and Science . 2017;30(6):231-249. https://doi. org/10.1002/pts.2289 12. Wallmeier M, Linvill E, Hauptmann M, Majschak J-P, Östlund S. Explicit FEM analysis of the deep drawing of paperboard. MechMater . 2015;89:202-215. https://doi.org/10.1016/j.mechmat.2015.06.014 13. Awais M, Sorvari J, Tanninen P, Leppänen T. Finite element analysis of the press forming process. International Journal of Mechanical Sci- ences . 2017;131:767-775. https://doi.org/10.1016/j.ijmecsci.2017. 07.053 14. Linvill E, Wallmeier M, Östlund S. A constitutive model for paper- board including wrinkle prediction and post-wrinkle behavior applied to deep drawing. International Journal of Solids and Structures . 2017; 117:143-158. https://doi.org/10.1016/j.ijsolstr.2017.03.029 15. Borgqvist E, Wallin M, Ristinmaa M, Tryding J. An anisotropic in-plane and out-of-plane elasto-plastic continuum model for paperboard. Composite Structures . 2015;126:184-195. https://doi.org/10.1016/j. compstruct.2015.02.067 16. Rowlands R, Gunderson D, Suhling J, Johnson M. Biaxial strength of paperboard predicted by Hill-type theories. The Journal of Strain Anal- ysis for Engineering Design . 1985;20(2):121-127. https://doi.org/10. 1243/03093247v202121 17. Fellers C, de Ruvo A, Elfstrom J, Htun M. Edgewise compression properties — a comparsion of handsheets made from pulps of various yields. Tappi . 1980;63(6):109-112. 18. Xia QS, Boyce MC, Parks DM. A constitutive model for the aniso- tropic elastic – plastic deformation of paper and paperboard. Interna- tional Journal of Solids and Structures . 2002;39(15):4053-4071. https://doi.org/10.1016/S0020-7683(02)00238-X 19. Baum, G.A., Habeger Jr, C.C., Fleischman Jr, E.H. Measurement of the orthotropic elastic constants of paper. 1982, 20. Harrysson A, Ristinmaa M. Large strain elasto-plastic model of paper and corrugated board. International Journal of Solids and Structures . 2008;45(11 – 12):3334-3352. https://doi.org/10.1016/j.ijsolstr.2008. 01.031 21. Tsai SW, Wu EM. A general theory of strength for anisotropic mate- rials. Journal of Composite Materials . 1971;5(1):58-80. https://doi.org/ 10.1177/002199837100500106 22. Li Y, Stapleton SE, Reese S, Simon J-W. Anisotropic elastic-plastic deformation of paper: In-plane model. International Journal of Solids and Structures . 2016;100:286-296. https://doi.org/10.1016/j.ijsolstr. 2016.08.024 23. Tjahjanto DD, Girlanda O, Östlund S. Anisotropic viscoelastic – viscoplastic continuum model for high-density cellulose-based mate- rials. J Mech Phys Solids . 2015;84:1-20. https://doi.org/10.1016/j. jmps.2015.07.002 24. Robertsson K, Borgqvist E, Wallin M, et al. Efficient and accurate sim- ulation of the packaging forming process. Packaging Technology and Science . 2018;31(8):557-566. https://doi.org/10.1002/pts.2383 25. Borgqvist E, Wallin M, Tryding J, Ristinmaa M, Tudisco E. Localized deformation in compression and folding of paperboard. Packaging Technology and Science . 2016;29(7):397-414. https://doi.org/10. 1002/pts.2218 26. Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London Series a Mathematical and Physical Sciences . 1948;193(1033):281-297. 27. Li S, Sitnikova E, Liang Y, Kaddour A-S. The Tsai-Wu failure criterion rationalised in the context of UD composites. Compos a: Appl Sci

How to cite this article: Lindberg G, Kulachenko A. Tray forming operation of paperboard: A case study using implicit finite element analysis. Packag Technol Sci . 2021;1-16. doi:10.1002/pts.2619

Made with FlippingBook Online document maker