PAPERmaking! Vol3 Nr1 2017

CNT Paper as Anode for Flexible Lithium-Ion Battery

traditional paper-making technology. The thick- ness, density and size can also be tailored arbi- trarily. In the study, MWCNT paper was applied directly as negative electrode without any substrate or binder. Since the carbonization process turned the ¯ber paper to amorphous carbon, the degree of purity and the conductivity of the MWCNT paper improved signi¯cantly. The reversible speci¯c ca- pacity of the CMP battery increased to 500 mAh/g from 220 mAh/g. And it maintained stable cycle performance at di®erent current densities. The MWCNT paper electrodes exhibited a strong ab- sorption of electrolyte, good conductivity and spe- cial micro-pores structure which greatly enhanced electrons and lithium ions migration. The primary studies revealed that the CMP can be used directly as negative electrode for lithium ion battery and have great potential as a °exible cell for wearable and portable electronic devices. Acknowledgments The ¯nancial support from Jiangxi Scienti¯c and Technical Bureau (20142BBE50071) and Jiangxi Educational Bureau (KJLD13006) are gratefully acknowledged. References 1. Z. Wang and S. Mitra, J. Power Sources 266 , 296 (2014). 2. W. Ren et al. , Electrochim. Acta 105 , 75 (2013). 3. S.W. Lee et al. , Energy Environ. Sci. 5 , 5437 (2012). 4. D. Zheng et al. , Physica E 53 , 155 (2013).

5. R. S. Morris et al. , J. Power Sources 138 , 277 (2004). 6. L. Zou et al. , J. Power Sources 184 , 566 (2008). 7. Y. Zhang et al. , Appl. Surf. Sci. 258 , 4729 (2012). 8. S. Yang et al. , Electrochim. Acta 52 , 5286 (2007). 9. S. Yang et al. , Electrochim. Acta 53 , 2238 (2008). 10. K. Sheem, Y. H. Lee and H. S. Lim, J. Power Sources 158 , 1425 (2006). 11. J. Y. Eom, D. Y. Kim and H. S. Kwon, J. Power Sources 157 , 507 (2006). 12. Q. Zheng et al. , Prog. Mater. Sci. 64 , 200 (2014). 13. K. Gao et al. , Carbohydr. Polym. 97 , 243 (2013). 14. Y. Guo et al. , Physica B 323 , 235 (2002). 15. S. Yoon et al. , J. Power Sources 279 , 495 (2015). 16. H. Gao et al. , Vacuum 112 , 1 (2015). 17. J. Wang et al. , J. Power Sources 161 , 1458 (2006). 18. D. T. Welna et al. , J. Power Sources 196 , 1455 (2011). 19. R. Dominko et al. , J. Eur. Ceram. Soc. 27 , 909 (2007). 20. K. Sun et al. , J. Power Sources 248 , 582 (2014). 21. L. Hu et al. , Proc. Natl. Acad. Sci. 106 , 21490 (2009). 22. V. L. Pushparaj et al. , Proc. Natl. Acad. Sci. 104 , 13574 (2007). 23. G. Zhou, F. Li and H. M. Cheng, Energy Environ. Sci. 7 , 1307 (2014). 24. M. Salajkova et al. , Compos. Sci. Technol. 87 , 103 (2013). 25. Q. Cheng et al. , Nano Lett. 13 , 4969 (2013). 26. S. H. Ng et al. , Electrochim. Acta 51 , 23 (2005). 27. C. Kang et al. , Nanotechnology 27 , 105402 (2016). 28. J. Wang, G. Wang and H. Wang, Electrochim. Acta , 182 , 192 (2015). 29. A. C. Ferrari and J. Robertson, Phys. Rev. B Con- dens. Matter 61 , 14095 (2000). 30. B. Song et al. , Energy Environ. Sci. 4 , 1379 (2011).

1650120-7

Made with FlippingBook Annual report maker