Z. Liu, M. Hughes, Y. Tong et al.
Energy 239 (2022) 121925
GHR Foundation. The support for Hugo Cortes Lopez from the California Energy Research Center (CERC), Chevron and the Inter- disciplinary Energy Research Program is also appreciated.
production: a review. Renew Sustain Energy Rev 2012;16:2781 e 805. https:// doi.org/10.1016/j.rser.2012.02.070. [19] Vreugdenhil B, Zwart R, Neeft J. Tar formation in pyrolysis and gasi fi cation. 2009. [20] Abu El-Rub Z, Bramer EA, Brem G. Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 2008;87:2243 e 52. https://doi.org/ 10.1016/j.fuel.2008.01.004. [21] Pütün E, Uzun B, Pütün A. Rapid pyrolysis of olive residue. 2. Effect of catalytic upgrading of pyrolysis vapors in a two-stage fi xed-bed reactor. Energy Fuel 2009. [22] Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Lappas AA, Pilavachi PA. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fi xed bed reactor. Bioresour Technol 2011;102:8261 e 7. https://doi.org/10.1016/ j.biortech.2011.06.032. [23] Liu Z, McNamara P, Zitomer D. Autocatalytic pyrolysis of wastewater biosolids for product upgrading. Environ Sci Technol 2017;51:9808 e 16. https://doi.org/ 10.1021/acs.est.7b02913. [24] Liu Z, Singer S, Tong Y, Kimbell L, Anderson E, Hughes M, Zitomer D, McNamara P. Characteristics and applications of biochars derived from wastewater solids. Renew Sustain Energy Rev 2018;90:650 e 64. https:// doi.org/10.1016/J.RSER.2018.02.040. [25] Bird Michelle TJ. Waste stream reduction and reuse in the pulp and paper sector. 2008. [26] Igalavithana AD, Choi SW, Shang J, Hanif A, Dissanayake PD, Tsang DCW, Kwon JH, Lee KB, Ok YS. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: effect of porous structure and surface chemistry. Sci Total Environ 2020;739:139845. https://doi.org/10.1016/ J.SCITOTENV.2020.139845. [27] Wang Z, Miao R, Ning P, He L, Guan Q. From wastes to functions: a paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal. J Colloid Interface Sci 2021;593:434 e 46. https://doi.org/10.1016/ J.JCIS.2021.02.118. [28] Xu Z, Lin Yunqin, Lin Yuejin, Yang D, Zheng H. Adsorption behaviors of paper mill sludge biochar to remove Cu, Zn and as in wastewater. Environ Technol Innov 2021;23:101616. https://doi.org/10.1016/J.ETI.2021.101616. [29] El-Rub ZA, Bramer E, Brem G. Review of catalysts for tar elimination in biomass gasi fi cation processes. Ind Eng 2004. [30] Sun Q, Yu S, Wang F, Wang J. Decomposition and gasi fi cation of pyrolysis volatiles from pine wood through a bed of hot char. Fuel 2011;90:1041 e 8. https://doi.org/10.1016/j.fuel.2010.12.015. [31] Rover MR, Hall PH, Johnston PA, Smith RG, Brown RC. Stabilization of bio-oils using low temperature, low pressure hydrogenation. Fuel 2015;153:224 e 30. https://doi.org/10.1016/j.fuel.2015.02.054. [32] Devi L, Ptasinski KJ, Janssen FJJG, van Paasen SVB, Bergman PCA, Kiel JHA. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renew Energy 2005;30:565 e 87. https://doi.org/10.1016/ j.renene.2004.07.014. [33] Muradov N, Fidalgo B, Gujar AC, Garceau N, T-Raissi A. Production and char- acterization of Lemna minor bio-char and its catalytic application for biogas reforming. Biomass Bioenergy 2012;42:123 e 31. https://doi.org/10.1016/ j.biombioe.2012.03.003. [34] Namioka T, Son Y Il, Sato M, Yoshikawa K. Practical method of gravimetric tar analysis that takes into account a thermal cracking reaction scheme. Energy Fuel 2009;23:6156 e 62. https://doi.org/10.1021/ef9006214. [35] Sappok M, Wagels D. Method for stabilizing heating oil or diesel oil, partic- ularly heating oil or diesel oil from the depolymerization of hydrocarbon- containing residues, or pyrolysis oil. US Pat 2013;8(394):264. [36] Technical Association of the Pulp and Paper Industry (U.S.), D.R.. TAPPI Kraft recovery Course. St. Petersburg, Florida, USA: TAPPI Kraft Recovery Course, 2007. TAPPI Press, Red Hook; 2007. [37] Paper Pulp and PCC. URL http://www.carmeusena.com/markets/paper-pulp- and-pcc (accessed 1.10.18). [38] Kuokkanen T, Nurmesniemi H, P € oyki € o R, Kujala K, Kaakinen J, Kuokkanen M. Chemical and leaching properties of paper mill sludge. Chem Speciat Bio- availab 2008;20:111 e 22. https://doi.org/10.3184/095422908X324480. [39] Gusta E, Dalai AK, Uddin MA, Sasaoka E. Catalytic decomposition of biomass tars with dolomites. Energy Fuel 2009;23:2264 e 72. https://doi.org/10.1021/ ef8009958. [40] Simell PA, Lepp € alahti JK, Bredenberg JB. Catalytic puri fi cation of tarry fuel gas with carbonate rocks and ferrous materials. Fuel 1992;71:211 e 8. https:// doi.org/10.1016/0016-2361(92)90011-C. [41] Cordero-Lanzac T, Hita I, Veloso A, Arandes JM, Rodríguez-Mirasol J, Bilbao J, Cordero T, Casta ~ no P. Characterization and controlled combustion of carbo- naceous deactivating species deposited on an activated carbon-based catalyst. Chem Eng J 2017;327:454 e 64. https://doi.org/10.1016/j.cej.2017.06.077. [42] Ib a ~ nez M, Valle B, Bilbao J, Gayubo AG, Casta ~ no P. Effect of operating condi- tions on the coke nature and HZSM-5 catalysts deactivation in the trans- formation of crude bio-oil into hydrocarbons. Catal Today 2012;195:106 e 13.
Credit author statement
Zhongzhe Liu: Conceptualization, Methodology, Writing e original draft. Matthew Hughes: Investigation. Yiran Tong: Formal analysis. Jizhi Zhou: Formal analysis. William Kreutter: Formal analysis. Hugo Cortes Lopez: Investigation. Simcha Singer: Formal analysis. Daniel Zitomer: Writing e review & editing. Patrick McNamara: Supervision, Writing e review & editing.
Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.energy.2021.121925.
References
[1] Liu Z, Norbeck JM, Raju ASK, Kim S, Park CS. Synthetic natural gas production by sorption enhanced steam hydrogasi fi cation based processes for improving CH4 yield and mitigating CO2 emissions. Energy Convers Manag 2016;126: 256 e 65. https://doi.org/10.1016/j.enconman.2016.08.008. [2] Liu Z, Qian G, Sun Y, Xu R, Zhou J, Xu Y. Speciation evolutions of heavy metals during the sewage sludge incineration in a laboratory scale incinerator. En- ergy Fuel 2010;24:2470 e 8. https://doi.org/10.1021/ef901060u. [3] McKendry P. Energy production from biomass (part 2): conversion technol- ogies. Bioresour Technol 2002;83:47 e 54. https://doi.org/10.1016/S0960- 8524(01)00119-5. [4] McNamara P, Koch J, Zitomer D. Pyrolysis of wastewater biosolids: lab-scale experiments and modeling. Proc Water Environ Fed 2014:1 e 14. https:// doi.org/10.2175/193864714816196655. [5] Patrick J McNamara, Koch JD, Liu Z, Zitomer DH. Pyrolysis of dried wastewater biosolids can Be energy positive. Water Environ Res 2016;88:804 e 10. https:// doi.org/10.2175/106143016X14609975747441. [6] Bridle TR, Pritchard D. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci Technol 2004;50:169 e 75. https://doi.org/10.2166/ wst.2004.0562. [7] Lehto J, Oasmaa A, Solantausta Y. Fuel oil quality and combustion of fast py- rolysis bio-oils. VTT Technol; 2013. [8] Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils - state of the art for the end users. Energy Fuel 1999;13:914 e 21. https://doi.org/10.1021/ ef980272b. [9] Sadaka S, Boateng A. Pyrolysis and bio-oil. 2009. [10] Baratieri M, Baggio P, Bosio B, Grigiante M, Longo GA. The use of biomass syngas in IC engines and CCGT plants: a comparative analysis. Appl Therm Eng 2009;29:3309 e 18. https://doi.org/10.1016/j.applthermaleng.2009.05.003. [11] Lu Q, He Z, Stoffella P. Land application of biosolids in the USA: a review. Appl Environ Soil Sci 2012. [12] McNamara PJ, Koch JD, Liu Z, Zitomer DH. Pyrolysis of dried wastewater biosolids can be energy positive. Water Environ Res 2016;88. https://doi.org/ 10.2175/106143016X14609975747441. [13] Carey DE, McNamara PJ, Zitomer DH. Biochar from pyrolysis of biosolids for nutrient adsorption and Turfgrass cultivation. Water Environ Res 2015;87: 2098 e 106. https://doi.org/10.2175/106143015X14362865227391. [14] Hoffman TC, Zitomer DH, McNamara PJ. Pyrolysis of wastewater biosolids signi fi cantly reduces estrogenicity. J Hazard Mater 2016. https://doi.org/ 10.1016/j.jhazmat.2016.05.088. [15] Kimbell LK, Kappell AD, McNamara PJ. Effect of pyrolysis on the removal of antibiotic resistance genes and class I integrons from municipal wastewater biosolids. Environ Sci Water Res Technol 2018. https://doi.org/10.1039/ C8EW00141C. [16] Ross JJ, Zitomer DH, Miller TR, Weirich CA, McNamara PJ. Emerging in- vestigators series: pyrolysis removes common microconstituents triclocarban, triclosan, and nonylphenol from biosolids. Environ Sci Water Res Technol 2016;2:282 e 9. https://doi.org/10.1039/C5EW00229J. [17] Liu Z, Mayer BK, Venkiteshwaran K, Seyedi S, Raju ASK, Zitomer D, McNamara PJ. The state of technologies and research for energy recovery from municipal wastewater sludge and biosolids. Curr Opin Environ Sci Heal 2020. https://doi.org/10.1016/j.coesh.2019.12.004. [18] Fonts I, Gea G, Azuara M, Abrego J, Arauzo J. Sewage sludge pyrolysis for liquid
15
Made with FlippingBook - Online magazine maker