PAPERmaking! Vol8 Nr3 2022

www.nature.com/scientificreports/

‡ˆ‡”‡ ‡• 1. Kjellgren, H., Stolpe, L. & Engstrom, G. Oxygen permeability of polyethylene-extrusion-coated greaseproof paper. Nord Pulp. Pap. Res. J. 23 , 272–276. https://doi.org/10.3183/npprj-2008-23-03-p272-276 (2008). 2. Yook, S. et al. Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose 27 , 4509–4523. https://doi.org/10.1007/s10570-020-03061-5 (2020). 3. Zhang, H., Miles, C., Gerdeman, B., LaHue, D. G. & DeVetter, L. Plastic mulch use in perennial fruit cropping systems: A review. Sci. Hortic. 281 , 109975. https://doi.org/10.1016/j.scienta.2021.109975 (2021). 4. Leja, K. & Lewandowicz, G. Polymer biodegradation and biodegradable polymers: A review. Pol. J. Environ. Stud. 19 , 255–266 (2010). 5. Smith, M., Love, D. C., Rochman, C. M. & Neff, R. A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 5 , 375–386. https://doi.org/10.1007/s40572-018-0206-z (2018). 6. Aulin, C. et al. Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces. J. Colloid Interface Sci. 317 , 556–567. https:// doi.org/10.1016/j.jcis.2007.09.096 (2008). 7. Choi, Y. J., Lazcano, R. K., Yousefi, P., Trim, H. & Lee, L. S. Perfluoroalkyl acid characterization in US municipal organic solid waste composts. Environ. Sci. Technol. Lett. 6 , 3 7 2 – 3 7 7 . http s : / / d oi. org / 1 0 . 1 0 2 1 / a c s . e s t l e tt . 9 b 0 0 2 8 0 ( 2 0 1 9 ) . 8. Hubbe, M. A. & Pruszynski, P. Greaseproof paper products: A review emphasizing ecofriendly approaches. BioResources 15 , 1978–2004 (2020). 9. Al-Gharrawi, M. Z., Wang, J. W. & Bousfield, D. W. Improving recycling of polyethylene-coated paperboard with a nanofibrillated cellulose layer. BioResources 16 , 3285–3297. https://doi.org/10.15376/biores.16.2.3285-3297 (2021). 10. Frone, A. N. et al. Preparation and characterization of pva composites with cellulose nanofibers obtained by ultrasonication. BioResources 6 , 487–512 (2011). 11. Aulin, C., Gallstedt, M. & Lindstrom, T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17 , 559–574. https://doi.org/10.1007/s10570-009-9393-y (2010). 12. Gottberg, J. M., Lappalainen, T. & Salminen, K. Polyvinyl alcohol as foaming agent in foam formed paper. Tappi J. 18 , 475–485. https://doi.org/10.32964/TJ18.8.475 (2019). 13. Baker, M. I., Walsh, S. P., Schwartz, Z. & Boyan, B. D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applica- tions. J. Biomed. Mater. Res. B 100B , 1451–1457. https://doi.org/10.1002/jbm.b.32694 (2012). 14. Bolto, B., Tran, T., Hoang, M. & Xie, Z. L. Crosslinked poly(vinyl alcohol) membranes. Prog. Polym. Sci. 34 , 969–981. https://doi. org / 1 0 . 1 0 1 6 / j. pro g p oly ms c i. 2 0 0 9 . 0 5 . 0 0 3 ( 2 0 0 9 ) . 15. Pathak, V. M. & Navneet, R. Review on the current status of polymer degradation: A microbial approach. Bioresour. Bioprocess. 4 , 1 5 . http s : / / d oi. org / 1 0 . 1 1 8 6 / s 4 0 6 4 3 - 0 1 7 - 0 1 4 5 - 9 ( 2 0 1 7 ) . 16. Shen, Z. H., Kwon, S., Oh, K., Abhari, A. R. & Lee, H. L. Facile fabrication of hydrophobic cellulosic paper with good barrier properties via PVA/AKD dispersion coating. Nord Pulp Pap. Res. J. 34 , 516–524. https://doi.org/10.1515/npprj-2019-0040 (2019). 17. Bendahou, D., Bendahou, A., Seantier, B., Grohens, Y. & Kaddami, H. Nano-fibrillated cellulose-zeolites based new hybrid com- posites aerogels with super thermal insulating properties. Ind. Crop Prod. 65 , 374–382. https://doi.org/10.1016/j.indcrop.2014.11. 012 (2015). 18. Bandera, D. et al. Influence of mechanical treatments on the properties of cellulose nanofibers isolated from microcrystalline cellulose. React. Funct. Polym. 85 , 134–141. https://doi.org/10.1016/j.reactfunctpolym.2014.09.009 (2014). 19. Anderson, S. R. et al. Enzymatic preparation of nanocrystalline and microcrystalline cellulose. Tappi J. 13 , 35–42. https://doi.org/ 1 0 . 3 2 9 6 4 / T J 1 3 . 5 . 3 5 ( 2 0 1 4 ) . 20. Brinchi, L., Cotana, F., Fortunati, E. & Kenny, J. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydr. Polym. 94 , 154–169. https://doi.org/10.1016/j.carbpol.2013.01.033 (2013). 21. Bilbao-Sainz, C., Bras, J., Williams, T., Sénechal, T. & Orts, W. HPMC reinforced with different cellulose nano-particles. Carbohydr. Polym. 86 , 1549–1557. https://doi.org/10.1016/j.carbpol.2011.06.060 (2011). 22. Mishra, R. K., Sabu, A. & Tiwari, S. K. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and 24. Herrick, F. W., Casebier, R. L., Hamilton, J. K. & Sandberg, K. R. in J. Appl. Polym. Sci.: Appl. Polym. Symp. (ITT Rayonier Inc.). 25. Nechyporchuk, O., Belgacem, M. N. & Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crop. Prod. 93 , 2–25. https://doi.org/10.1016/j.indcrop.2016.02.016 (2016). 26. Belbekhouche, S. et al. Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr. Polym. 83 , 1740–1748. https://doi.org/10.1016/j.carbpol.2010.10.036 (2011). 27. Kan, K. H. M. & Cranston, E. D. Mechanical testing of thin film nanocellulose composites using buckling mechanics. Tappi J. 12 , 9–17 (2013). 28. Wang, J. W. et al. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. Acs Sustain. Chem. Eng. 6 , 49–70. http s : / / d oi. org / 1 0 . 1 0 2 1 / a c s s u s ch e m e ng . 7 b 0 3 5 2 3 ( 2 0 1 8 ) . prospect. J. Saudi Chem. Soc. 22 , 949–978. https://doi.org/10.1016/j.jscs.2018.02.005 (2018). 23. Turbak, A. F., Snyder, F. W. & Sandberg, K. R. in J Appl Polym Sci Appl Polym Symp. 815–827. 29. Mertaniemi, H., Laukkanen, A., Teirfolk, J. E., Ikkala, O. & Ras, R. H. A. Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Adv. 2 , 2882–2886. https:// doi. org/ 10. 1039/ c2ra00020b (2012). 30. Kisonen, V. et al. Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J. Mater. Sci. 50 , 3189–3199. https:// doi. org/ 10. 1007/ s10853-015-8882-7 (2015). 31. Koppolu, R. et al. Continuous processing of nanocellulose and polylactic acid into multilayer barrier coatings. ACS Appl. Mater. Interfaces 11 , 11920–11927. https://doi.org/10.1021/acsami.9b00922 (2019). 32. Li, J., Xu, Q. H. & Jin, L. Q. Advanced Materials Research Vol. 785, 440–443 (Trans Tech Publications Ltd., 2013). 33. Isogai, A. Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59 , 449–459. https:// d oi. org / 1 0 . 1 0 0 7 / s 1 0 0 8 6 - 0 1 3 - 1 3 6 5 - z ( 2 0 1 3 ) . 34. Afra, E., Mohammadnejad, S. & Saraeyan, A. Cellulose nanofibils as coating material and its effects on paper properties. Prog. Org. Coat. 101 , 455–460. https://doi.org/10.1016/j.porgcoat.2016.09.018 (2016). 35. Aulin, C., Johansson, E., Wågberg, L. & Lindström, T. Self-organized films from cellulose I Nanofibrils using the layer-by-layer technique. Biomacromolecules 11 , 872–882. https://doi.org/10.1021/bm100075e (2010). 36. Chaabouni, O. & Boufi, S. Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties. Carbohydr. Polym. 156 , 64–70. https://doi.org/10.1016/j.carbpol.2016.09.016 (2017). 37. Deng, Q., Li, J., Yang, J. & Li, D. Optical and flexible α-chitin nanofibers reinforced poly(vinyl alcohol) (PVA) composite film: Fabrication and property. Compos. A Appl. Sci. Manuf. 67 , 5 5 – 6 0 . http s : / / d oi. org / 1 0 . 1 0 1 6 / j. c omp o s ite s a . 2 0 1 4 . 0 8 . 0 1 3 ( 2 0 1 4 ) . 38. Wu, Y. et al. Mechanical and thermal properties of rice straw cellulose nanofibrils-enhanced polyvinyl alcohol films using freezing- and-thawing cycle method. Cellulose 26 , 3193–3204. https://doi.org/10.1007/s10570-019-02310-6 (2019). 39. Zhai, T., Zheng, Q., Cai, Z., Xia, H. & Gong, S. Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr. Polym. 148 , 300–308. https://doi.org/10.1016/j.carbpol.2016.04.065 (2016).

 ‹‡–‹Ƥ ‡’‘”–• |

Š––’•ǣȀȀ†‘‹Ǥ‘”‰ȀͷͶǤͷͶ͹;Ȁ•ͺͷͻͿ;ǦͶ͸͸Ǧ͸ͶͺͿͿǦ;

Ϳ Vol.:(0123456789)

(2022) 12:16148 |

Made with FlippingBook - Online magazine maker