2268
Cellulose (2016) 23:2249–2272
presented at the 17. Internationales Mu¨nchner Papier Symposium, Mu¨nchen Feiler AA, Stiernstedt J, Theander K, Jenkins P, Rutland MW (2007) Effect of capillary condensation on friction force and adhesion. Langmuir 23:517–522 Fengel D, Wegener G (1989) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin Fernandes Diniz J, Gil M, Castro J (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494. doi:10.1007/s00226-003-0216-2 Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, London Forgacs OL, Robertson AA, Mason SG (1957) The hydrodynamic behaviour of papermaking fibres. In: Bolam F (ed) Funda- mentals of papermaking fibres—1st fundamental research symposium, vol 1. Technical Section of the British Paper and Board Maker’ Association (Inc.), Cambridge, pp 447–473 Futo LP (1969) Qualitative und quantitative Ermittlung der Mikrozugeigenschaften von Holz. Holz als Roh- und Werkst 27:192–202 Ga¨rdlund L, Wa˚gberg L, Gernandt R (2003) Polyelectrolyte complexes for surface modification of wood fibres: II. Influence of complexes on wet and dry strength of paper. Colloids Surf A 218:137–149 Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 5:545–567 Gels W, Ho¨mmen H, Isermann R, Blum R, Esser A (2012) Einsatz eines Vinylformamid-Copolymers zur Steigerung von Festigkeiten und Produktivita¨t. Wochenbl fu¨r Pap 140:925–929 Grignon J, Scallan AM (1980) Effect of pH and neutral salts upon the swelling of cellulose gels. J Appl Polym Sci 25:2829–2843. doi:10.1002/app.1980.070251215 Groom LH, Mott L, Shaler SM (2002) Mechanical properties of individual southern pine fibers. Part I. Determination and variability of stress-strain curves with respect to tree height and juvenility. Wood Fiber Sci 29:14–27 Guldenberg B, Schwarz M, Mayer M (2004) High-speed pro- duction of wood free paper grades—an ongoing challenge. Paper Presented at the PulPaper, Helsinki Gurnagul N, Seth R (1997) Wet-web strength of hardwood kraft pulps: wet-web tensile strength decreases with increasing fibre wall thickness. Pulp Pap Can 98:44–48 Gustafsson J, Ciovica L, Peltonen J (2003) The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 44:661–670 Hamzeh Y, Sabbaghi S, Ashori A, Abdulkhani A, Soltani F (2013) Improving wet and dry strength properties of recycled old corrugated carton (OCC) pulp using various polymers. Carbohydr Polym 94:577–583. doi:10.1016/j. carbpol.2013.01.078 Hardacker KW (1970) Effects of loading rate, span and beating on individual wood fiber tensile properties. In: Page D (ed) Physics and chemistry of wood pulp fibers, vol 8. Special Technical Association Publication (Tappi), Appleton, New York Ha¨ttich T (2000) Impact of press roll adhesion on paper machine runnability and sheet quality. Pap Puu 82:393–397
Heinemann S, Wang S, Peltonen J, Kleen M (2011) Charac- terization of fiber wall surface structure of chemically modified TMP fibers from Norway spruce. Nord Pulp Pap Res J 26:21–30 Ho¨pner T, Jayme G, Ulrich JC (1955) Bestimmung des Wasserru¨ckhaltevermo¨gens (Quellwertes) von Zellstoffen. Das Pap 9:476–482 Hua X, Owston T, Laleg M (2011) Wet-web strength and pressability of highly-filled sheets. Paper presented at the PaperCon 2011, Cincinnati, USA Huang F, Li K, Kulachenko A (2009) Measurement of interfiber friction force for pulp fibers by atomic force microscopy. J Mater Sci 44:3770–3776. doi:10.1007/s10853-009-3506-8 Hubbe MA (2006) Bonding between cellulosic fibers in the absence and presence of dry-strength agents—a review. BioResources 1:281–318 Israelachvili JN (2006a) Contrasts between intermolecular, interparticle and intersurface forces. Intermolecular and surface forces, 2nd edn. Academic Press, Amsterdam, pp 152–175 Israelachvili JN (2006b) Electrostatic forces between surfaces in liquid. Intermolecular and surface forces, 2nd edn. Aca- demic Press, Amsterdam, pp 213–259 Jantunen J (1985) Visco-elastic properties of wet webs under dynamic conditions. In: Baker CF (ed) VIIIth Fundamental research symposium, vol 8th. Pira International, Oxford, pp 133–162 Jayme G (1944) Mikro-Quellungsmessungen an Zellstoffen. Wochenbl fu¨r Pap 72:187–194 Jayme G (1958) Properties of wood celluloses. II. Determination and significance of water retention value. Tappi J 41:180A–183A Kallmes OJ, Bernier G, Peres M (1977) A mechanistic theory of the load-elongation properties of paper—in four parts; Part 2: the characteristics of fibers taken into account. Pap Technol Ind 18:243–245 Katchalsky A (1954) Polyelectrolyte Gels. In: Butler JAV, Randall JT (eds) Progress in biophysics and biophysical chemistry, vol 4. Academic Press Inc., New York and Pergamon Press Ltd., London, pp 1–59 Kendall K (2001a) Molecular adhesion and its applications: the sticky universe. Springer Us Kluwer Academic/Plenum Publishers, New York Kendall K (2001b) More intricate mechanisms: raising and lowering adhesion. Molecular adhesion and its applica- tions: The Sticky Universe. Springer Us Kluwer Academic/ Plenum Publishers, New York, pp 155–178 Kibblewhite RP (1973) Effects of beating on wet web behaviour Research Report No 633. New Zealand Forest Service Kibblewhite R (1980) Effects of pulp freezing and frozen pulp storage on fibre characteristics. Wood Sci Technol 14:143–158 Kibblewhite R, Brookes D (1975) Factors which influence wet web strength of commercial pulps. Appita 28:227–231 Klein M (2007) Improving the initial wet web strength (IWWS) of deinked recycled fibre pulps through fibre modification by means of strength-enhancing additives. Papiertechnis- che Stiftung, Heidenau Koljonen K, O¨ sterberg M, Johansson LS, Stenius P (2003) Surface chemistry and morphology of different mechanical
123
Made with FlippingBook Digital Proposal Creator