PAPERmaking! Vol2 Nr2 2016

2272

Cellulose (2016) 23:2249–2272

Voyutskij SS (1963b) Autohesion and adhesion of high poly- mers. Polymer reviews, vol 4. Wiley Interscience Publ., NewYork Wa˚gberg L (2010) Key Note: linking fundamental adhesion measurements to paper properties. Paper presented at the applied interface chemistry, Mu¨nchen Wa˚gberg L, Annergren G (1997) Physicochemical characteri- zation of papermaking fibres. In: Baker CF (ed) Advances in Paper Science and Technology-11th Fundamental Research Symposium, vol 1, Cambridge, pp 1–82 Wa˚gberg L, Winter L, O¨ dberg L, Lindstro¨m T (1987) On the charge stoichiometry upon adsorption of a cationic poly- electrolyte on cellulosic materials. Colloids Surf 27:163–173 Wang X (2006) Improving the papermaking properties of kraft pulp by controlling hornification and internal fibrillation. University of Technology, Helsinki Washburn O, Buchanan J (1964) Changes in web structure on pressing and drying. Pulp Pap Mag Can 65:T400–T408 Weigl C, Hruschka H, Nowak E, Tiefenthaler H (2004) Addition and mode of action modified galactomannans in the paper manufacture and paper finishing. Wochenbl fu¨r Pap 132:1493–1502 Weihs J, Wa¨tzig D, Rauch R (2007) Modernste Online-Faser- analytik zur Mehrwertsteigerung bei der Papierherstellung. Paper presented at the faserstoff-symposium, Dresden Weise U (1998) Hornification: mechanisms and terminology. Pap Puu 80:110–115 Weise U, Paulapuro H (1996) Der Zusammenhang zwischen Faserschrumpfung und Verhornung. Das Pap 50:328–333 Weise U, Maloney T, Paulapuro H (1996) Quantification of water in different states of interaction with wood pulp fibres. Cellulose 3:189–202 Weise U, Hiltunen E, Paulapuro H (1998) Verhornung von Zellstoff und Maßnahmen zu ihrer Reversion. Das Pap 52:V14–V19

Wernersson ELG, Borodulina S, Kulachenko A, Borgefors G (2014) Characterisations of fibre networks in paper using micro computed tomography images. Nord Pulp Pap Res J 29:468–475 Williams DG (1983) A fiber network model theory for the wet web strength of paper. Tappi J 66:159–162 Yan D, Li K (2013) Real contact area between fibers surfaces. paper presented at the advances in paper science and technology—15th fundamental research symposium, Cambridge, 8–13 Nov 2013 Yin Y-L, Prud’homme RK, Stanley F (1992) Relationship between poly(acrylic acid) gel structure and synthesis. ACS Symp Ser 480:91–113 Young RA (1986) Structure, swelling and bonding of cellulose fibers. In: Young RA, Rowell RM (eds) Cellulose—struc- ture, modification an hydrolysis. Wiley, New York u.a., pp 91–128 Yu Y, Jiang Z, Fei B, Wang G, Wang H (2010) An improved microtensile technique for mechanical characterization of short plant fibers: a case study on bamboo fibers. J Mater Sci. doi:10.1007/s10853-010-4806-8 Zauscher S, Caulfield DF, Nissan AH (1996) The influence of water on the elastic modulus of paper, Part I: extension of the H-bond theory. Tappi J 79:178–182 Zauscher S, Caulfield DF, Nissan AH (1997) Influence of water on the elastic modulus of paper. Part 2: verification of predictions of the H-bond theory. Tappi J 80:214–223 Zellcheming (1957) Bestimmung des Wasserru¨ckhaltevermo¨gens (Quellwertes) von Zellstoffen vol FA TEST IV/33/57. FA Halbstoff- und Papierpru¨fung (TEST), Verein der Zellstoff- und Papierchemiker und Ingenieure Zellcheming Zellcheming (1966) Merkblatt VI/1/66 Pru¨fung von Holzstoffe. Verein der Zellstoff- und Papier-Chemiker und—Ingenieure Zimmermann B (2012) Online-Prediction of wet web strength, 1 Dec 2009 edn. Papiertechnische Stiftung, Heidenau, Germany

123

Made with FlippingBook Digital Proposal Creator