Semantron 23 Summer 2023

Mathematical curves and Hooke’s chain theory

1 √1+𝑝 2

𝑑𝑝=∫𝑘𝑑𝑥 (9)

Solve (9):

ln(|√1+𝑝 2 +𝑝|) = 𝑎𝑥 +𝑐,𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑚𝑜𝑑 𝑠𝑖𝑔𝑛 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 √1+𝑝 2 > |𝑝|

ln(√1+𝑝 2 + 𝑝) = 𝑎𝑥 + 𝑐

When 𝑥 =0 , 𝑝 =0 (because the curve is flat at x = 0), 𝑙𝑛1= 𝑐 , 𝑐 =0

ln(√1+𝑝 2 +𝑝) = 𝑎𝑥 (10)

Now eliminate logarithm:

√1+𝑝 2 +𝑝 = 𝑒 𝑎𝑥 (11)

Attempt to eliminate roots:

(√1+𝑝 2 + 𝑝) (√1 + 𝑝 2 −𝑝)= 𝑒 𝑎𝑥 (√1+𝑝 2 −𝑝),𝑡ℎ𝑒𝑛 𝑒𝑥𝑝𝑎𝑛𝑑 𝑏𝑟𝑎𝑐𝑘𝑒𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒:

1= 𝑒 𝑎𝑥 √1+𝑝 2 −𝑒 𝑎𝑥 𝑝,𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒 1+𝑒 𝑎𝑥 𝑝 = 𝑒 𝑎𝑥 √1+𝑝 2 ,𝑠𝑞𝑢𝑎𝑟𝑒 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠: 1+𝑒 2𝑎𝑥 𝑝 2 +2𝑒 𝑎𝑥 𝑝 = 𝑒 2𝑎𝑥 +𝑝 2 𝑒 2𝑎𝑥 ,𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒 𝑎𝑔𝑎𝑖𝑛,1+2𝑒 𝑎𝑥 𝑝 = 𝑒 2𝑎𝑥 (12)

Rearrange for p:

𝑒 2𝑎𝑥 −1 2𝑒 𝑎𝑥

𝑒 𝑎𝑥 −𝑒 −𝑎𝑥 2

𝑝 =

=

𝑑𝑦 𝑑𝑥

Substitute in p as

and integrate:

𝑒 𝑎𝑥 −𝑒 −𝑎𝑥 2

𝑒 𝑎𝑥 −𝑒 −𝑎𝑥 2𝑎 𝑒 𝑎𝑥 −𝑒 −𝑎𝑥 2𝑎

𝑑𝑦 𝑑𝑥

=

, 𝑦 =

+𝑑,𝑎𝑡 𝑥 = 0,𝑦 = 0,𝑠𝑜 𝑑 = 0

cosh𝑎𝑥 𝑎

𝑦 =

=

3

This can be used to model all strings or chains that hang under their own weight with their two ends fixed horizontally.

3 See Differential Equations with Applications and Historical Notes 3 rd edition 88-94.

285

Made with FlippingBook - Online catalogs