biofiltration of Utah’s drinking water, turning food waste into energy, and more. Storm Water Management and Green Infrastructure: One UWRL research study is evaluating vegetation types that survive in bioretention areas in the Intermountain West for a low-tech, plant-based treatment approach to safely release stormwater from urban areas back to the environment free of hazardous metals and polluting nutrients in a low- cost, environmentally sustainable way. Hydroinformatics The increasing flood of sensor data presents both a challenge and an opportunity for researchers. The volume of data produced far outstrips our ability to use it effectively with conventional data management and analysis tools. However, UWRL researchers have been key participants and leaders for over a decade in the development of CUAHSI’s (The Consortium of Universities for the Advancement of Hydrologic Sciences, Inc.) Hydrologic Information Systems, which help researchers manage and interpret the data they collect and provide technology to enhance collaboration. Key contributions follow. The Observations Data Model: The initial CUAHSI Observations Data Model and subsequent ODM2 were developed to consistently describe, store, manage, and encode spatially discrete observational datasets for archive and transfer over the Internet, across scientific disciplines, and in the domain cyberinfrastructures within which they are stored. HydroShare: This web-based Hydrologic Information System enables researchers to more easily share data, computer models, and research results in a variety of formats to help manage, organize, and interpret the extensive data available (https://www.hydroshare.org/). HydroShare supports the growing trend for open data that is findable, accessible, interoperable and reusable (FAIR). Future Opportunities and Directions The UWRL has evolved into a diverse center of excellence for generating knowledge related to water challenges. It fills an important role in the US/global
Figure 3. AggieAir collaborated with E&J Gallo Winery, USDA-ARS, and NASA on the GRAPEX, “Grape Remote sensing Atmospheric Profile & Evapotranspiration eXperiment” project, producing high-resolution imagery to improve high-value agriculture by mapping the spatial variability of crop water use and water stress.
community of water research facilities, with the interdisciplinary expertise to develop better ways to measure, monitor, model, understand, and manage 21st century water resources. Good water management recognizes the value of information from many disciplines—from how a single water molecule behaves to the constraints and opportunities created by state or national water laws and policies. The increasingly collaborative nature of research generally requires a team—a community—to gather information from the many disciplines needed to advance understanding and solve problems. Building connections to other research facilities will bring the UWRL’s unique capabilities to bear on future water challenges. Even with the exciting new technological advances in fields such as remote sensing, cyberinfrastructure, information management, and “big data,” it has been and will continue to be the hard work and dedication of students, faculty, other professionals and the community who push the boundaries to advance the field of water resources management, in all its complexity. ■
David G. Tarboton is Director of the UWRL and Professor of Civil and Environmental Engineering at Utah State University. He has 29 years of experience at USU and leads the interdisciplinary research efforts of faculty, staff and students at the UWRL. Utah Water Research Laboratory, Utah State University Civil and Environmental Engineering, 4110 Old Main Hill, Logan, UT 84322-4110, USA Contact: dtarb@usu.edu Co-Authors: Carri Richards, Mac McKee, Alfonso Torres-Rua, Bethany Neilson, Blake Tullis, David Rosenberg, David Stevens, Jeffery Horsburgh, Joan McLean, Michael Johnson, R. Ryan Dupont all at the Utah Water Research Laboratory.
September 2019
VOLUME 21 - NUMBER 5 | 15
Made with FlippingBook HTML5