Aerospace Technology - P18315560

NEW! INTEGRATED NAVIGATION FOR VERSATILITY AND ROBUSTNESS: ADDRESSING OUR NAVIGATION AND TRACKING CHALLENGES

The course material covered, begins with fundamentals of navigation for versatility and robustness, showing intuitive connections of mathematics to physical examples, followed by a natural transition to advanced topics. Addressing navigation and tracking challenges, practical realities are given top priority, by delivering maximum effectiveness from simplest permissible representations. This course will enable designers to extract maximum benefit from available sensors, however extravagant or austere they may be, at every instant of time throughout a mission. Administrators will be empowered to recognize what is achievable from any given array of equipment — without the common excessive dependence on GPS. The course will show methods capable of producing dramatic performance improvements, without which the challenges facing the industry today won’t be met. LEARNING OBJECTIVES By attending this seminar, you will be able to identify and explain: • Widely accepted expressions for all pertinent translational and rotational motions clearly exhibited without distraction from nonessential complexity • Inertial navigation • Kalman filtering • GPS • How the real world doesn’t quite follow theory and how to compensate for it • How to prepare and integrate raw GPS pseudorange measurements with raw data from gyros, accelerometers, and magnetometers (or other azimuth indicators) adhering to a separate independent time base; extension to GNSS • Dramatically simplified yet effective, flight-data validated, Kalman filter model with inertial error propagation counteracted by GPS/GNSS updating • How to achieve performance commensurate with GPS/ GNSS measurement accuracy from low-cost IMU in presence of large long-term drifts • How to follow direct step-by-step procedures, giving you an entirely new depth of understanding • Closed form solution for inertial error propagation, tilt and velocity errors; intuitive quantitative results • Adaptation of navigation development for application to tracking; exploiting that commonality to characterize INS error propagation between updates • Receiver Autonomous Integrity Monitoring (RAIM) with advancements addressing independent usage for each separate measurement, to protect against erratic data points • Adaptation of all methods to a variety of PNT data sources other than GNSS

24

3 ways to get a no-obligation price quote to deliver a course to your company Call SAE Corporate Learning at +1.724.772.8529 | Fill out the online quote request at sae.org/corplearning Email us at Corplearn@sae.org

Made with FlippingBook - professional solution for displaying marketing and sales documents online