A DFT study on the H 2 -acceptorless dehydrogenative boration and transfer boration of alkenes catalyzed by zirconium complex Yulan Dai and Ming Lei Beijing University of Chemical Technology, China For the synthesis of vinyl boronate esters, the direct catalytic H 2 -acceptorless dehydrogenative boration of alkenes is one of the promisingstrategies. 1 In this paper, thedensity functional theory(DFT) method was employed to investigate the reaction mechanism of dehydrogenation borationand transfer boration of alkenescatalyzed by the zirconium complex (Cp 2 ZrH 2 ). 2-6 There are two possible pathways for this reaction: the alkene insertion followed by the dehydrogenative boration (path A) and the alkene insertion after the dehydrogenative boration (path B). The calculated results showed thatpath Ais more favorable than path B, and that the rate-determining step is the C-B couplingstep with an energy barrier of 18.7kcal/mol. The reaction modesof the dehydrogenation and the alkeneinsertionwerealso discussed. The alkeneinsertion modes and sequences were proposed to be of importance in the chemoselectivity of this reaction.
References 1. Shi, X., Li, S., Wu, L. H 2 -Acceptorless Dehydrogenative Boration and Transfer Boration of Alkenes Enabled by Zirconium Catalyst. Chem. Int. Ed. 2019 , 58, 16167-16171. 2. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. . Gaussian 09 revision B.01 Gaussian, Inc.: Wallingford, CT, 2009. 3. Zhao, Y., Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Chem. Acc. 2007 , 120, 215-241. 4. Wachters, A. J. H. Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. Chem. Phys. 1970 , 52, 1033-1036. 5. Hay, P. J. Gaussian Basis Sets for Molecular Calculations. The Representation of 3d Orbitals in Transition-Metal Atoms. Chem. Phys. 1977 , 66, 4377-4384. 6. Hehre, W. J., Ditchfield, R. P., J. A. Self-Consistent Molecular Orbital Methods. 12. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic-Molecules. J. Chem. P ys. 1972 , 56, 2257-2261.
P24
© The Author(s), 2022
Made with FlippingBook Learn more on our blog