5.2.2 Curve Fitting with Quadratic Models - Practice
1. Identify the data set that is not quadratic. ○ x 2 4 6 8 10 y 20 29 37 44 50 ○ x 1 2 3 4 5 y 5 20 36 53 71 ○ x 2 4 6 8 10 y 7 15 25 38 57 ○ x 1 2 3 4 5 y 20 30 38 44 48 3. Identify the data set that could be quadratic. ○ x −4 −2 0 2 4 y − 10 −6 −2 2 6 ○ x 0 3 6 9 12 y − 9 −1 9 21 35 ○ x −5 −2 1 4 7 y − 12 −6 4 16 30 ○ x 0 1 4 8 16 y − 3 2 7 12 17
2. Identify the data set that could be quadratic. ○ x − 4 − 2 0 2 4 y − 15 − 6 3 12 21 ○ x 0 2 4 6 8 y − 5 0 5 15 30 ○ x 4 5 6 7 8 y − 1 0 4 13 29 ○ x 6 9 12 15 18 y − 14 −4 8 22 38 4. Identify a quadratic function that fits the points ( − 1, 9), (0, 4), and (3, 13).
6. The table shows the mass of a substance decreasing over a period of time during a chemical experiment. Identify a quadratic model for the mass M , given the time t . Then use the model to predict the mass at t = 14 seconds. Time (s) Mass (g) 1 85.5 4 76.4 7 67.9
5. Identify a quadratic function that fits the points ( − 3, − 7), (0, − 4), and (2, − 12).
269
Made with FlippingBook flipbook maker