Rasool et al. _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Acknowledgments The authors would like to thank reviewers and editors for their thoughtful comments.
_____________________________________________________________________________________________ 20 Braz. J. Biom. ǡǤ 43 ǡǦͶ͵ʹǡʹͲʹͷǤ 13. Iqbal, P., & Uduman, P. S. Mathematical modeling and performance analysis of stock preparation unit in paper plant industry using genetic algorithm. International Journal of Mathematical Sciences , 34 (02), 1629-1638 (2014). 9. Deenadayalan, V., & Vaishnavi, P. Improvised deep learning techniques for the reliability analysis and future power generation forecast by fault identification and remediation. Journal of Ambient Intelligence and Humanized Computing , 1-9 (2021). https://link.springer.com/article/10.1007/s12652-021-03086-z 10. Ebeling, A. An introduction to reliability and maintainability engineering. Tata Mcgraw Hill Company Ltd , New Delhi. (2000). 11. Fasihi, M., Tavakkoli-Moghaddam, R., Najafi, S. E., & Hajiaghaei, M. Optimizing a bi-objective multi-period fish closed-loop supply chain network design by three multi-objective meta-heuristic algorithms. Scientia Iranica . (2021). http://dx.doi.org/10.24200/sci.2021.57930.5477 12. Garg, H. Performance analysis of an industrial system using soft computing based hybridized technique. Journal of the Brazilian Society of Mechanical Sciences and Engineering , 39 , 1441- 1451 (2017). https://doi.org/10.1007/s40430-016-0552-4 References 1. Abbas, N. H., & Abdulsaheb, J. A. An adaptive multi-objective particle swarm optimization algorithm for multi-robot path planning. Journal of Engineering , 22 (7), 164-181 (2016). http://dx.doi.org/10.31026/j.eng.2016.07.10 2. Aggarwal, A. K., Kumar, S., & Singh, V. Performance modeling of the serial processes in refining system of a sugar plant using RAMD analysis. International Journal of System Assurance Engineering and Management , 8 (Suppl 2), 1910-1922 (2017). https://doi.org/10.1007/s13198- 016-0496-1 3. Aggarwal, A. K., Kumar, S., & Singh, V. Mathematical modeling and fuzzy availability analysis of skim milk powder system of a dairy plant. International Journal of System Assurance Engineering and Management , 7 (Suppl 1), 322-334 (2016). https://doi.org/10.1007/s13198-014- 0252-3 4. Ahmadi, S., & Amin, S. H. An integrated chance-constrained stochastic model for a mobile phone closed-loop supply chain network with supplier selection. Journal of cleaner production , 226, 988-1003 (2019). https://doi.org/10.1016/j.jclepro.2019.04.132 5. Barabady, J., & Kumar, U. Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran. Reliability engineering & system safety , 93 (4), 647-653 (2008). https://doi.org/10.1016/j.ress.2007.10.006 6. Barak, M. S., Yadav, D., & Barak, S. K. Stochastic analysis of two-unit redundant system with priority to inspection over repair. Life Cycle Reliability and Safety Engineering , 7 (2), 71-79 (2018). https://doi.org/10.1007/s41872-018-0041-0 7. Barak, M. S., Yadav, D., & Kumari, S. Stochastic analysis of a two-unit system with standby and server failure subject to inspection. Life Cycle Reliability and Safety Engineering , 7 (1), 23-32 (2018). https://doi.org/10.1007/s41872-017-0033-5 8. Choudhary, D., Tripathi, M., & Shankar, R. Reliability, availability and maintainability analysis of a cement plant: a case study. International Journal of Quality & Reliability Management, 36 (3), 298-313 (2019). doi: 10.1108/ijqrm-10-2017-0215
Made with FlippingBook. PDF to flipbook with ease