PAPERmaking! Vol11 Nr2 2025

Barrios et al. Biotechnology for Biofuels and Bioproducts

(2025) 18:48

Page 20 of 23

Carolina State University, supported by the State of North Carolina and the National Science Foundation (award number ECCS-2025064). This work used instrumentation at AIF acquired with support from the National Science Foundation (DMR-1726294). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI). Author contributions N.B., M.G., R.V. and L.P. conceptualized the study; N.B. and M.G. acquired the data; N.B. and M.G. visualized the data; L.P. and R.V. supervised the work; L.P. obtained the funding; L.P. and R.V. were in charge of project administration. N.B. wrote the original draft; all authors reviewed, revised and approved the final manuscript. Funding The authors gratefully acknowledge the financial support for this work provided by the Alliance for Pulp and Paper Technology and Innovation (APPTI) through the award number 2020-2022.

Technol. 2016;206:99–103. https://doi.org/10.1016/j.biortech.2016.01. 074. 9. Banvillet G, Depres G, Belgacem N, Bras J. Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production. Car bohydr Polym. 2021;255: 117383. https://doi.org/10.1016/j.car bpol. 2020.117383. 10. Kumar A, Tazeb A, Ram C. Enzyme-assisted pulp refining: an energy sav- ing approach. Phys Sci Rev. 2021;6:20190046. https://doi.org/10.1515/ psr-2019-0046. 11. Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes- factors affecting enzymes, conversion and synergy. Biotechnol Adv. 2012;30:1458–80. https://doi.org/10.1016/j.biotechadv.2012.03.002. 12. Silva COG, Vaz RP, Filho EXF. Bringing plant cell wall-degrading enzymes into the lignocellulosic biorefinery concept. Biofuels, Bioprod Biorefin- ing. 2018;12:277–89. https://doi.org/10.1002/bbb.1832. 13. Barrios N, Marquez R, McDonald JD, Hubbe MA, Venditti RA, Pal L. Innovation in lignocellulosics dewatering and drying for energy sustainability and enhanced utilization of forestry, agriculture, and marine resources - a review. Adv Colloid Interface Sci. 2023;318: 102936. https://doi.org/10.1016/J.CIS.2023.102936. 14. Furszyfer Del Rio DD, Sovacool BK, Griffiths S, Bazilian M, Kim J, Foley AM, Rooney D. Decarbonizing the pulp and paper industry: a critical and systematic review of sociotechnical developments and policy options. Renew Sustain Energy Rev. 2022;167: 112706. https://doi.org/ 10.1016/j.rser.2022.112706. 15. Nurdiawati A, Urban F. Towards deep decarbonisation of energy-inten- sive industries: a review of current status. Technol Policies Energies. 2021;14:2408. https://doi.org/10.3390/en14092408 . 16. Barrios N, Smith MM, Venditti RA, Pal L. Enzyme-assisted dewater- ing and strength enhancement of cellulosic fibers for sustainable papermaking: a bench and pilot study. J Clean Prod. 2024;434: 140094. https://doi.org/10.1016/j.jclepro.2023.140094. 17. Gu F, Wang W, Cai Z, Xue F, Jin Y, Zhu JY. Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales. Cellulose. 2018;25:2861–71. https://doi.org/10.1007/ s10570-018-1765-8. 18. Park S, Venditti RA, Abrecht DG, Jameel H, Pawlak JJ, Lee JM. Surface and pore structure modification of cellulose fibers through cellulase treatment. J Appl Polym Sci. 2007;103:3833–9. https://doi.org/10.1002/ app.25457. 19. Yoon YH, Pope JM, Wolfe J. The effects of solutes on the freezing/ properties of and hydration forces in lipid lamellar phases. Biophys J. 1998;74:1949–65. https://doi.org/10.1016/S0006-3495(98)77903-2 . 20. Zou Y, Maillet B, Brochard L, Coussot P. Unveiling moisture transport mechanisms in cellulosic materials: vapor vs. bound water. PNAS Nexus. 2024;3: pgad450. https://doi.org/10.1093/pnasnexus/pgad450 . 21. Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM. Basic effects of pulp refining on fiber proper- ties—a review. Carbohydr Polym. 2015;115:785–803. https://doi.org/10. 1016/j.carbpol.2014.08.047. 22. Sebastião D, Gonçalves MS, Marques S, Fonseca C, Gírio F, Oliveira AC, Matos CT. Life cycle assessment of advanced bioethanol produc- tion from pulp and paper sludge. Bioresour Technol. 2016;208:100–9. https://doi.org/10.1016/j.biortech.2016.02.049. 23. Rahnama Mobarakeh M, Santos Silva M, Kienberger T. Pulp and paper industry: decarbonisation technology assessment to reach co2 neutral emissions—an austrian case study. Energies. 2021;14:1161. https://doi. org/10.3390/en14041161. 24. Navaee-Ardeh S, Bertrand F, Stuart PR. Emerging biodrying technol- ogy for the drying of pulp and paper mixed sludges. Dry Technol. 2006;24:863–78. https://doi.org/10.1080/07373930600734026 . 25. Tomberlin KE, Venditti R, Yao Y. Life cycle carbon footprint analysis of pulp and paper grades in the united states using production-line- based data and integration. BioResources. 2020;15:3899. https://doi. org/10.15376/biores.15.2.3899-3914. 26. Smook GA, Wilkes A. Handbook for pulp and paper technologists. 3rd ed. Ontario: Pulp Pap Canada; 2003. p. 104. 27. Stenström S. Drying of paper: a review 2000–2018. Dry Technol. 2020;38:825–45. https://doi.org/10.1080/07373937.2019.1596949 .

Data availability No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

Author details 1 Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, NC 27695, USA.

Received: 23 December 2024 Accepted: 8 April 2025

References 1. Yang M, Li J, Wang S, Zhao F, Zhang C, Zhang C, Han S. Status and trends of enzyme cocktails for efficient and ecological production in the pulp and paper industry. J Clean Prod. 2023;418: 138196. https:// doi.org/10.1016/j.jclepro.2023.138196. 2. Liu J, Hu Y, Gu W, Lan H, Zhang Z, Jiang L, Xu X. Research progress on the application of cell-free synthesis systems for enzymatic processes. C r i t R e v B i o te c h n o l. 2 0 2 3 ; 4 3 : 9 3 8 – 5 5 . https://doi.org/10.1080/07388551. 2022.2090314. 3. Wei S, Liu K, Ji X, Wang T, Wang R. Application of enzyme technology in biopulping and biobleaching. Cellulose. 2021;28:10099–116. https:// doi.org/10.1007/s10570-021-04182-1. 4. Hilgers R, Vincken JP, Gruppen H, Kabel MA. Laccase/mediator systems: their reactivity toward phenolic lignin structures. ACS Sustain Chem Eng. 2018;6:2037–46. https://doi.org/10.1021/acssuschemeng.7b03451. 5. Li J, Zhang S, Li H, Ouyang X, Huang L, Ni Y, Chen L. Cellulase pretreat- ment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol. 2018;251:1–6. https://doi.org/10.1016/j.biortech.2017.12.026. 6. Oksanen T, Buchert J, Viikari L. The role of hemicelluloses in the hornifi- cation of bleached kraft pulps. Holzforschung. 1997;51:355–60. https:// doi.org/10.1515/hfsg.1997.51.4.355. 7. Lecourt M, Meyer V, Sigoillot JC, Petit-Conil M. Energy reduction of refining by cellulases. Holzforschung. 2010;64:441–6. https://doi.org/10. 1515/HF.2010.066. 8. Liu W, Wang B, Hou Q, Chen W, Wu M. Effects of fibrillation on the wood fibers’ enzymatic hydrolysis enhanced by mechanical refining. Bioresour

Made with FlippingBook. PDF to flipbook with ease