PAPERmaking! Vol11 Nr2 2025

Barrios et al. Biotechnology for Biofuels and Bioproducts

(2025) 18:48

Page 21 of 23

51. Bare J. TRACI 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol Environ Policy. 2011;13:687–96. https://doi.org/10.1007/s10098-010-0338-9. 52. Valmet (2024) WinGEMS 53. TAPPI (2022) TIP 0404-47 Paper Machine Performance Guidelines. 1–23 54. Ortega R, Forfora N, Urdaneta I, Azuaje I, Vivas KA, Vera RE, Franco J, Frazier R, Abbati C, Saloni D, Jameel H, Venditti R, Gonzalez R. Life cycle assessment of Brazilian bleached eucalyptus kraft pulp: integrating bleaching processes and biogenic carbon impacts. Clean Environ Syst. 2024;15: 100234. https://doi.org/10.1016/J.CESYS.2024.100234. 55. Larnaudie V, Ferrari MD, Lareo C. Techno-economic analysis of a liquid hot water pretreated switchgrass biorefinery: effect of solids loading and enzyme dosage on enzymatic hydrolysis. Biomass Bioenerg. 2019;130: 105394. https://doi.org/10.1016/j.biombioe.2019.105394. 56. Fisher International I (2023) FisherSolve Database 57. Nagl M, Haske-Cornelius O, Bauer W, Nyanhongo GS, Guebitz GM. Enhanced energy savings in enzymatic refining of hardwood and softwood pulp. Energy Sustain Soc. 2023;13:19. https://doi.org/10.1186/ s13705-023-00398-0. 58. Buzala KP, Przybysz P, Kalinowska H, Derkowska M. Effect of cellulases and xylanases on refining process and kraft pulp properties. PLoS ONE. 2016;11: e0161575. https://doi.org/10.1371/jour nal.pone.0161575. 59. Grigorevski-Lima AL, De Oliveira MMQ, Do Nascimento RP, Da Silva Bon EP, Coelho RRR. Production and partial characterization of cellulases and xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass. Appl Biochem Biotechnol. 2013;169:1373–85. https:// doi.org/10.1007/s12010-012-0053-6. 60. Wang Z, Ong HX, Geng A. Cellulase production and oil palm empty fruit bunch saccharification by a new isolate of Trichoderma koningii D-64. Process Biochem. 2012;47:1564–71. https://doi.org/10.1016/j. procbio.2012.07.001. 61. Oksanen A, Edelmann K, Kataja-Aho J, Suurnäkki A. Enhancing dewatering of thermo-mechanical pulp (TMP) based papermak- ing through enzymatic treatment. Holzforschung. 2011;65:787–95. https://doi.org/10.1515/HF.2011.083. 62. Maximino MG, Taleb MC, Adell AM. Influence of the enzyme addi- tion point on recycled industrial pulp properties. BioResources. 2 0 1 3 ; 8 : 1 0 8 9 – 9 9 . h t t p s : / / d o i . o rg / 1 0 . 1 5 3 7 6 / b i o re s. 8 . 1 . 1 0 8 9 - 1 0 9 9 . 63. Chemelli A, Gomernik F, Thaler F, Huber A, Hirn U, Bauer W, Spirk S. Cationic starches in paper-based applications—a review on analyti- cal methods. Carbohydr Polym. 2020;235: 115964. https://doi.org/10. 1016/j.carbpol.2020.115964. 64. Bajpai P. Biotechnology for pulp and paper processing, Second Edi- tion. 2018 65. Sharma D, Chaudhary R, Kaur J, Arya SK. Greener approach for pulp and paper industry by Xylanase and Laccase. Biocatal Agric Biotech- n o l. 2 0 2 0 ; 2 5 : 1 0 1 6 0 4 . h t t p s : / / d o i . o rg / 1 0 . 1 0 1 6 / j. b c a b. 2 0 2 0 . 1 0 1 6 0 4 . 66. Lu J, Rao S, Le T, Mora S, Banerjee S. Increasing cake solids of cellu- losic sludge through enzyme-assisted dewatering. Process Biochem. 2 0 1 1 ; 4 6 : 3 5 3 – 7 . h t t p s : / / d o i . o rg / 1 0 . 1 0 1 6 / j. p ro c b i o. 2 0 1 0 . 0 9 . 0 0 8 . 67. Morais FP, Carta AMMS, Amaral ME, Curto JMR. Cellulose fiber enzy- matic modification to improve the softness, strength, and absorption properties of tissue papers. BioResources. 2021;16:846. https://doi. org/10.15376/biores.16.1.846-861. 68. Belle J, Odermatt J. Initial wet web strength of paper. Cellulose. 2 0 1 6 ; 2 3 : 2 2 4 9 – 7 2 . h t t p s : / / d o i . o rg / 1 0 . 1 0 0 7 / s 1 0 5 7 0 - 0 1 6 - 0 9 6 1 - 7 . 69. Gehmayr V, Sixta H. Pulp properties and their influence on enzymatic d e gr a d a b i l i t y. B i o m a c ro m o l. 2 0 1 2 ; 1 3 : 6 4 5 – 5 1 . h t t p s : / / d o i . o rg / 1 0 . 1 0 2 1 / bm201784u. 70. Rusu M, Mörseburg K, Gregersen Ø, Yamakawa A, Liukkonen S. Rela- tion between fibre flexibility and crosssectional properties. BioRe- s o u rc e s. 2 0 1 1 ; 6 : 6 4 1 – 5 5 . h t t p s : / / d o i . o rg / 1 0 . 1 5 3 7 6 / b i o re s. 6 . 1 . 6 4 1 - 6 5 5. 71. Pala H, Mota M, Gama FM. Enzymatic modification of paper fibres. B i o c a t a l B i o t r a n s fo r m a t i o n . 2 0 0 2 ; 2 0 : 3 5 3 – 6 1 . h t t p s : / / d o i . o rg / 1 0 . 1 0 8 0 / 1024242021000032494. 72. Hubbe MA, Heitmann JA. Review of factors affecting the release of water from cellulosic fibers during paper manufacture. BioResources. 2 0 0 7 ; 2 : 5 0 0 – 3 3 . h t t p s : / / d o i . o rg / 1 0 . 1 5 3 7 6 / b i o re s. 2 . 3 . 5 0 0 - 5 3 3 . 73. Van de Ven TGM. A model for the adsorption of polyelectrolytes on pulp fibers: relation between fiber structure and polyelectrolyte

28. Martínez-Abad A, Giummarella N, Lawoko M, Vilaplana F. Differences in extractability under subcritical water reveal interconnected hemicel- lulose and lignin recalcitrance in birch hardwoods. Green Chem. 2018;20:2534–46. https://doi.org/10.1039/c8gc00385h. 29. Malgas S, Kwanya Minghe VM, Pletschke BI. The effect of hemicellulose on the binding and activity of cellobiohydrolase I, Cel7A, from Tricho- derma reesei to cellulose. Cellulose. 2020;27:781–97. https://doi.org/10. 1007/s10570-019-02848-5. 30. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in Biomass - NREL/TP-510–42618. Lab Anal Proced. 2012: 1–16 31. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8. https://doi.org/10.1021/ ac60147a030. 32. Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 1992;23:257–70. https://doi.org/ 10.1016/0168-1656(92)90074-J. 33. Adney B, Baker J (2008) Measurement of cellulase activities laboratory 34. Eveleigh DE, Mandels M, Andreotti R, Roche C. Measurement of sac- charifying cellulase. Biotechnol Biofuels. 2009;2:21. https://doi.org/10. 1186/1754-6834-2-21. 35. Santos FA, de Carvalho-Gonçalves LCT, de Cardoso-Simões ALC, de Santos SFM. Evaluation of the production of cellulases by Penicillium sp. FSDE15 using corncob and wheat bran as substrates. Bioresour Technol R e p o r t s. 2 0 2 1 ; 1 4 : 1 0 0 6 4 8 . https://doi.org/10.1016/j.biteb.2021.100648. 36. Thermo Scientific. User Guide: Pierce BCA Protein Assay Kit. Pierce Biotechnol. 2011 37. TAPPI (2024) Forming handsheets for physical tests of pulp, Test Method TAPPI/ANSI T 205 sp-24. Tappi Stand. 38. T248 Sp-00 (2021) Laboratory beating of pulp (PFI mill method), Test Method TAPPI/ANSI T 248 sp-21. Tappi 39. Bajpai P (2014) Improving Drainability of Recycled Fibres. In: Recycling and Deinking of Recovered Paper 40. TAPPI (2015) Fiber Length of Pulp by Classification, Test Method T 233 cm-15. Tappi Stand. 41. Chai XS, Zhu JY, Li J. A simple and rapid method to determine hexeneu- ronic acid groups in chemical pulps. J Pulp Pap Sci. 2001;27:165–70. 42. Zhu JY, Zhou HF, Chai XS, Johannes D, Pope R, Valls C, Roncero MB. Inter-laboratory comparisons of hexenuronic acid measurements in kraft eucalyptus pulps using a UV-Vis spectroscopic method. Tappi J. 2014;13:57–61. https://doi.org/10.32964/tj13.1.57. 43. Ballesteros JEM, dos Santos V, Mármol G, Frías M, Fiorelli J. Potential of the hornification treatment on eucalyptus and pine fibers for fiber- cement applications. Cellulose. 2017;24:2275–86. https://doi.org/10. 1007/s10570-017-1253-6. 44. Park S, Venditti RA, Jameel H, Pawlak JJ. Hard to remove water in cellu- lose fibers characterized by high resolution thermogravimetric analysis - Methods development. Cellulose. 2006;13:23–30. https://doi.org/10. 1007/s10570-005-9009-0. 45. Park S, Venditti RA, Jameel H, Pawlak JJ. Changes in pore size distribu- tion during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym. 2006;66:97–103. https://doi. org/10.1016/j.carbpol.2006.02.026. 46. Park S, Venditti RA, Jameel H, Pawlak JJ. Studies of the heat of vaporization of water associated with cellulose fibers characterized by thermal analysis. Cellulose. 2007;14:195–204. https://doi.org/10.1007/ s10570-007-9108-1. 47. Abasi S, Davis R, Podstawczyk DA, Guiseppi-Elie A. Distribution of water states within Poly(HEMA-co-HPMA)-based hydrogels. Polymer (Guildf). 2019;185: 121978. https://doi.org/10.1016/j.polymer.2019.121978. 48. Weise U, Maloney T, Paulapuro H. Quantification of water in different states of interaction with wood pulp fibres. Cellulose. 1996;3:189–202. https://doi.org/10.1007/bf02228801. 49. Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel H-J. The new inter- national standards for life cycle assessment: ISO 14040 and ISO 14044. I nt J Life Cycle Assess. 2006;11:80–5. https://doi.org/10.1065/lca2006.02. 002. 50. Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B. The ecoinvent database version 3 (part I): overview and methodol- ogy. Int J Life Cycle Assess. 2016;21:1218–30. https://doi.org/10.1007/ s11367-016-1087-8.

Made with FlippingBook. PDF to flipbook with ease