PAPERmaking! Vol11 Nr2 2025

Barrios et al. Biotechnology for Biofuels and Bioproducts

(2025) 18:48

Page 22 of 23

92. Tze W, Gardner D. Swelling of recycled wood pulp fibers: effect on hydroxyl availability and surface chemistry. Wood fiber Sci. 2001;33:364–76. 93. Pala H, Lemos MA, Mota M, Gama FM. Enzymatic upgrade of old paper- board containers. Enzyme Microb Technol. 2001;29:274–9. https://doi. org/10.1016/S0141-0229(01)00380-5. 94. Yu H, Xu Y, Ni Y, Wu Q, Liu S, Li L, Yu S, Ji Z. Enhanced enzymatic hydroly- sis of cellulose from waste paper fibers by cationic polymers addition. Car bohydr Polym. 2018;200:248–54. https://doi.org/10.1016/j.car bpol. 2018.07.079. 95. Park S, Venditti RA, Jameel H, Pawlak JJ. Hard-to-remove water in cel- lulose fibers characterized by thermal analysis: a model for the drying of wood-based fibers. Tappi J. 2007;6:10–6. 96. Dutt D, Tyagi CH, Singh RP, Kumar A. Effect of enzyme concoctions on fiber surface roughness and deinking efficiency of sorted office paper. Cellul Chem Technol. 2012;46:611–23. 97. Niegelhell K, Chemelli A, Hobisch J, Griesser T, Reiter H, Hirn U, Spirk S. Interaction of industrially relevant cationic starches with cellulose. Car bohydr Polym. 2018;179:290–6. https://doi.org/10.1016/j.car bpol. 2017.10.003. 98. Nakamura K, Hatakeyama T, Hatakeyama H. Studies on bound water of cellulose by differential scanning calorimetry. Text Res J. 1981;51:607– 13. https://doi.org/10.1177/004051758105100909 . 99. Zelinka SL, Glass SV, Jakes JE, Stone DS. A solution thermodynamics definition of the fiber saturation point and the derivation of a wood– water phase (state) diagram. Wood Sci Technol. 2016;50:443–62. https:// doi.org/10.1007/s00226-015-0788-7. 100. Mihranyan A, Strømme M. Capillary condensation of moisture in fractal pores of native cellulose powders. Chem Phys Lett. 2004;393:389–92. https://doi.org/10.1016/j.cplett.2004.06.043. 101. Chang Q. Colloid and interface chemistry for water quality control. 2016 102. Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem Rev. 2023;123:1925–2015. 103. Kaewnopparat S, Sansernluk K, Faroongsarng D. Behavior of freez- able bound water in the bacterial cellulose produced by Acetobacter xylinum : an approach using thermoporosimetry. AAPS PharmSciTech. 2008;9:701–7. https://doi.org/10.1208/s12249-008-9104-2 . 104. Ooka H, Chiba Y, Nakamura R. Thermodynamic principle to enhance enzymatic activity using the substrate affinity. Nat Commun. 2023;14:4860. https://doi.org/10.1038/s41467-023-40471-y. 105. Salem KS, Naithani V, Jameel H, Lucia L, Pal L. A systematic examination of the dynamics of water-cellulose interactions on capillary force- induced fiber collapse. Carbohydr Polym. 2022;295: 119856. https://doi. org/10.1016/j.carbpol.2022.119856. 106. Adani F, Papa G, Schievano A, Cardinale G, D’Imporzano G, Tambone F. Nanoscale structure of the cell wall protecting cellulose from enzyme attack. Environ Sci Technol. 2011;45:1107–13. https://doi.org/10.1021/ es1020263. 107. Paajanen A, Ceccherini S, Maloney T, Ketoja JA. Chirality and bound water in the hierarchical cellulose structure. Cellulose. 2019;26:5877–92. https://doi.org/10.1007/s10570-019-02525-7. 108. Barrios N, Parra JG, Venditti RA, Pal L. Elucidation of temperature- induced water structuring on cellulose surfaces for environmental and energy sustainability. Carbohydr Polym. 2024;329: 121799. https://doi. org/10.1016/j.carbpol.2024.121799. 109. Dudick S, Hess DW, Breedveld V. Rewet suppression through press felt engineering. TAPPI J. 2022;21:327–32. 110. Hii C, Gregersen ØW, Chinga-Carrasco G, Eriksen Ø, Toven K. The web structure in relation to the furnish composition and shoe press pulse profiles during wet pressing. Nord Pulp Pap Res J. 2012;27:798–805. https://doi.org/10.3183/NPPRJ-2012-27-04-p798-805. 111. Liu G, Zhang J, Bao J. Cost evaluation of cellulase enzyme for industrial- scale cellulosic ethanol production based on rigorous Aspen Plus

properties. Nord Pulp Pap Res J. 2000;15:494–501. https://doi.org/10. 3183/NPPRJ-2000-15-05-P494-501/MACHINEREADABLECITATION/RIS. 74. Kanda T. Mechanism of cellulase action on cellulose structure. J Appl G l yc o s c i . 2 0 0 3 ; 5 0 : 7 7 – 8 1 . h t t p s : / / d o i . o rg / 1 0 . 5 4 5 8 / j a g. 5 0 . 7 7 . 75. Mansfield SD, De Jong E, Stephens RS, Saddler JN. Physical charac- terization of enzymatically modified kraft pulp fibers. J Biotechnol. 1 9 9 7 ; 5 7 : 2 0 5 – 1 6 . h t t p s : / / d o i . o rg / 1 0 . 1 0 1 6 / S 0 1 6 8 - 1 6 5 6 ( 9 7 ) 0 0 1 0 0 - 4. 76. Dickson AR, Wong KKY (1998) Microscopic analysis of kraft fibres after treatment with carbohydrate-degrading enzymes. In: Proceedings of the International Conference on Biotechnology in the Pulp and Paper Industry. Vancouver, pp C183–C186 77. Tripathi S, Verma P, Mishra OP, Sharma N, Bhardwaj NK, Tandon R. Reduction in refining energy and improvement in pulp freeness through enzymatic treatment - Lab and plant scale studies. J Sci Ind Res. 2019:78: 78. Suchy M, Hakala T, Kangas H, Kontturi E, Tammelin T, Pursula T, Vuorinen T. Effects of commercial cellobiohydrolase treatment on fiber strength and morphology of bleached hardwood pulp. Holz- fo r s c h u n g. 2 0 0 9 ; 6 3 : 7 3 1 – 6 . h t t p s : / / d o i . o rg / 1 0 . 1 5 1 5 / H F. 2 0 0 9 . 1 0 4 . 79. Singh S, Singh VK, Aamir M, Dubey MK, Patel JS, Upadhyay RS, Gupta VK. Cellulase in pulp and paper industry. In: New and future develop- ments in microbial biotechnology and bioengineering: microbial cellulase system properties and applications. 2016 80. Bajpai P. Environmentally benign approaches for pulp bleaching. Second edition. 2012 81. Dahlman O, Jacobs A, Sjöberg J. Molecular properties of hemicel- luloses located in the surface and inner layers of hardwood and soft- wood pulps. Cellulose. 2003;10:325–34. https://doi.org/10.1023/A: 1027316926308. 82. Valls C, Roncero MB. Using both xylanase and laccase enzymes for pulp bleaching. Bioresour Technol. 2009;100:2032–9. https://doi.org/ 10.1016/j.biortech.2008.10.009. 83. Daniel AID, Neto CP, Evtuguin DV, Silvestre AJD. Hexenuronic acid contents of Eucalyptus globulus kraft pulps: variation with pulping conditions and effect on ECF bleachability. Tappi J. 2003;2:3. 84. Pettersson EAK, Ragnar M, Lindström ME. Kraft cooking characteristics and hexenuronic acid concentration of pulps from Eucalypt and other hardwood species. Nord Pulp Pap Res J. 2002;17:222–7. https://doi.org/ 10.3183/npprj-2002-17-03-p222-227. 85. Colodette JL, Gomide JL, Júnior DL, Pedrazzi C. Effect of pulp delig- nification degree on fiber line performance and bleaching effluent load. BioR esources. 2007;2:223–34. https://doi.org/10.15376/biores.2.2. 223- 234. 86. Chong YH, Daud WRW, Leh CP. Effect of hydrogen peroxide and anth- raquinone on the selectivity and hexenuronic acid content of mixed tropical hardwood kraft pulp during oxygen delignification. BioRe- sources. 2013;8:2547–57. https://doi.org/10.15376/biores.8.2.2547-2557. 87. Zhao L, Yuan Z, Kapu NS, Chang XF, Beatson R, Trajano HL, Martinez DM. Increasing efficiency of enzymatic hemicellulose removal from bam- boo for production of high-grade dissolving pulp. Bioresour Technol. 2017;223:40–6. https://doi.org/10.1016/j.biortech.2016.10.034. 88. Nie S, Wang S, Qin C, Yao S, Ebonka JF, Song X, Li K. Removal of hexenu- ronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp. Bioresour Technol. 2015;196:413–7. https://doi.org/10.1016/j.biortech.2015.07.115. 89. Saukkonen E, Lyytikäinen K, Geydt P, Backfolk K. Surface selective removal of xylan from refined never-dried birch kraft pulp. Cellulose. 2014;21:3677–90. https://doi.org/10.1007/s10570-014-0354-8. 90. Blomstedt M, Asikainen J, Lähdeniemi A, Ylönen T, Paltakari J, Hakala TK. Effect of xylanase treatment on dewatering properties of birch kraft p u l p. B i o R e s o u rc e s. 2 0 1 0 ; 5 : 1 1 6 4 – 7 7 . https://doi.org/10.15376/biores. 5.2.1164-1177. 91. Cheng Q, Wang J, McNeel JF, Jacobson PM. Water retention value measurements of cellulosic materials using a centrifuge technique. BioR esources. 2010;5:1945–54. https://doi.org/10.15376/biores.5.3. 1945-1954.

Made with FlippingBook. PDF to flipbook with ease