PAPER making! FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL ® FROM THE PUBLISHERS OF PAPER TEC Volume 11, Number 2, 2025 Synergistic cell Ǧ free enzyme cocktails for enhanced fiber matrix development: improving dewatering, strength, and decarbonization in the paper industry NELSON BARRIOS, MARÍA GONZALEZ, RICHARD VENDITTI & LOKENDRA PAL Background The pulp and paper industry is under increasing pressure to adopt sustainable solutions that address its substantial energy consumption and environmental impact. One of the most energy-intensive operations is the thermal drying, which presents significant opportunities for efficiency improvements. This study evaluates a cell-free mild enzyme pretreatment, utilizing a cocktail of cellulases and xylanases, combined with cationic starch, to enhance dewatering efficiency and improve paper strength utilizing bleached hardwood pulp fibers. Life cycle and economic analysis were also conducted to quantify the environmental impact and economic benefits, with a particular focus on direct greenhouse gas emissions. Enhanced water removal during pressing can significantly reduce energy consumption during thermal drying, facilitating the decarbonization of the paper industry. Results The cell-free enzyme pretreatment, applied with mild refining and cationic starch, achieved significant improvements in dewatering efficiency and paper strength. The treatment led to an 11% point increase in solids and a 25% improvement in tensile strength. Morphological analyses revealed no changes in fiber length and width; however, reductions in kink and curl indexes indicated enhanced fiber flexibility and bonding potential. Furthermore, the enzyme–starch combination decreased water retention value by 27%, including substantial reductions in bound and hard-to-remove water content. Environmental assessments estimated a 12% reduction in global warming potential (GWP), with the technology yielding net savings of $11.29 per air- dried ton of paper through reduced natural gas consumption. Conclusions This study demonstrates the technical feasibility and economic viability of incorporating enzyme and cationic starch treatments into papermaking. The treatment improves paper quality while reducing energy consumption, costs, and carbon emissions. These findings support the broader adoption of enzyme-based innovations for sustainable manufacturing, aligning with decarbonization goals and industry demands for greater efficiency. The results highlight a promising avenue for achieving significant environmental and economic benefits in the pulp and paper sector. Contact information: Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, NC 27695, USA. Biotechnology for Biofuels and Bioproducts (2025) 18:48 https://doi.org/10.1186/s13068-025-02646-1 Creative Commons Attribution 4.0 License The Paper Industry Technical Association (PITA) is an independent organisation which operates for the general benefit of its members – both individual and corporate – dedicated to promoting and improving the technical and scientific knowledge of those working in the UK pulp and paper industry. Formed in 1960, it serves the Industry, both manufacturers and suppliers, by providing a forum for members to meet and network; it organises visits, conferences and training seminars that cover all aspects of papermaking science. It also publishes the prestigious journal Paper Technology International ® and the PITA Annual Review , both sent free to members, and a range of other technical publications which include conference proceedings and the acclaimed Essential Guide to Aqueous Coating .
Page 1 of 24
Article 1 – Enzyme Technology
Made with FlippingBook. PDF to flipbook with ease