Semantron 24 Summer 2024

Partial derivaives

𝑘 =±𝑖𝑤

∴ 𝐹(𝑥) = 𝑒 𝑖𝑤𝑥 𝑎𝑛𝑑 𝐹(𝑥) = 𝑒 −𝑖𝑤𝑥

∴ 𝐹(𝑥) = 𝐴𝑒 𝑖𝑤𝑥 +𝐵𝑒 −𝑖𝑤𝑥

Now we rewrite 𝐹(𝑥) in terms of trigonometric functions, since:

𝑒 𝑖𝑤𝑥 = cos(𝑤𝑥) + 𝑖 sin(𝑤𝑥) ,

𝑒 −𝑖𝑤𝑥 = cos(𝑤𝑥) − 𝑖 sin(𝑤𝑥)

This gives:

𝐹(𝑥) = 𝐴(cos(𝑤𝑥) + 𝑖 sin(𝑤𝑥)) + 𝐵(cos(𝑤𝑥) − 𝑖 sin(𝑤𝑥))

𝐹(𝑥) = 𝐴cos(𝑤𝑥)+𝐵sin(𝑤𝑥) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛𝑒𝑤 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝐴,𝐵

The boundary conditions then require:

𝐴cos(0) + 𝐵sin(0) = 0 ,

𝐴 cos(𝑤𝐿) + 𝐵 sin(𝑤𝐿) = 0

Since sin(0) = 0, cos(0) = 1 then:

𝐴 =0,

∴ 𝐵 sin(𝑤𝐿) = 0

∴𝐵=0 𝑜𝑟 sin(𝑤𝐿)=0

We are looking for non-trivial solutions thus:

𝑛𝜋 𝐿

𝑤𝐿=𝑛𝜋 ⟹𝑤=

,

𝑛 ∈ℤ

𝑛𝜋 𝐿

∴ 𝐹(𝑥) = 𝐵 sin (

𝑥)

Likewise, 𝐺(𝑡) satisfies the ODE given by:

𝐺 ′ (𝑡) = −𝜆𝐾𝐺(𝑡)

𝑑𝐺 𝐺(𝑡)

= −𝜆𝐾𝑑𝑡

1 𝐺(𝑡)

⟹∫

𝑑𝐺 = ∫ −𝜆𝐾 𝑑𝑡

⟹ ln|𝐺(𝑡)| = −𝜆𝐾𝑡 + 𝐶

⟹ 𝐺(𝑡) = 𝐷𝑒 −𝜆𝐾𝑡 ,

𝑤ℎ𝑒𝑟𝑒 𝐷 = 𝑒 𝐶

𝑛 2 𝜋 2 𝐾 𝐿 2

(−

𝑡)

⟹ 𝐺(𝑡) = 𝐷𝑒

Since: 𝑇(𝑥, 𝑡) = 𝐹(𝑥)𝐺(𝑡) , we conclude that the nontrivial separable solutions of the heat equation that satisfy the boundary conditions are given by:

𝑛 2 𝜋 2 𝐾 𝐿 2

𝑛𝜋 𝐿

(−

𝑡)

𝑇(𝑥, 𝑡) = 𝑃 sin (

𝑥)𝑒

,

𝑤ℎ𝑒𝑟𝑒 𝑃 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

138

Made with FlippingBook - PDF hosting