Size-tunable Ni-Cu core-shell nanoparticles: structure, composition, and catalytic activity for the RWGS reaction Maria Heilmann 1,4 , Carsten Prinz 1 , Ralf Bienert 1 , Robert Wendt 2 , Benny Kunkel 3 , Jörg Radnik 1 , Armin Hoell 2 , Sebastian Wohlrab 3 , Ana Guilherme Buzanich 1 and Franziska Emmerling 1,4 1 Bundesanstalt für Materialforschung und -prüfung, Germany, 2 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany, 3 Leibniz-Institut für Katalyse e.V., Germany, 4 Humboldt-Universität zu Berlin, Germany Nanoparticles (NPs) have become important materials for a variety of chemical technologies, including catalysis. One of the main challenges is the reduction of green house gases, such as CO 2 . One opportunity besides the capturing is the conversion to synthesis gas via the reverse water-gas shift reaction.[1,2] A facile and efficient method is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core-shell NPs.[3] The diameter of the NPs can be tuned in a range from 6 nm to 30 nm and the Ni:Cu ratio from 30:1 to 1:1. The NPs are structurally characterized with combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray photoelectron spectroscopy, and X-ray absorption fine structure. Using these analytical methods, a core-shell-shell structure their chemical composition is elucidated. A depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO 2 -supported NiCu core-shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO 2 to CO using hydrogen as reactant (reverse water–gas shift reaction). References 1. A. Ranjbar, A. Irankhah, S. F. Aghamiri, J. Environ. Chem. Eng . 2018 ,6, 4945. 2. B. Lu, Z. Zhang, X. Li, C. Luo, Y. Xu, L. Zhang, Fuel 2020 ,276. 3. M.Heilmann, C. Prinz, R. Bienert, R. Wendt, B. Kunkel, J. Radnik, A. Hoell, S. Wohlrab, A. Guilherme Buzanich, F. Emmerling, Adv. Eng. Mater. 2022 , 24 (6), 2101308.
P09
© The Author(s), 2022
Made with FlippingBook Learn more on our blog