Horizons Symposium: Electronic & energy materials

Growing of anisotropic low melting transparent metal halides in ionic liquids for superior ion conduction Biswajit Bhattacharyya a , Christian Balischewski a, Eric Sperlich a, Christina Günter b Stefan

Mies a , Alexandra Kelling a and Andreas Taubert a a Institute of Chemistry, University of Potsdam,Germany b Institute of Geosciences, University of Potsdam,Germany

Organic-inorganic metal halides are emerging as a next generation novel material in energy and optoelectronic applications. With recent updates,these materials are also showing fascinating results in other appealing fields like energy storage and sensors. Among the various examples of materials, ionic liquids based metal-halideshave also gained tremendous attention in those applications. Due to the lowmelting point (in generalbelow 100 °C) and low vapor pressure, these materials have been extensively thought for usingas an electrolyte in fuel cells, supercapacitors etc. In this presentation, I will talk about organic-inorganic transition metal-halide structures, where ionic liquids act as organic cations. These organic-inorganic metal-halides form 1D anisotropic structures which show a high ionic conductivity of 10 -4 Scm -1 at room temperature. With elevation of temperature the conductivity increases and it reaches to 10 -2 Scm -1 at 70 0 C. This is the very first report of superior ion conductivity of a transparent organic- inorganic metal-halide structure that could be a very important milestone for future solid-state battery research. References 1. Manser, J. S.; Christians, J. A.; Kamat, P. V., Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956-13008. 2. Kwak, H.; Wang, S.; Park, J.; Liu, Y.; Kim, K. T.; Choi, Y.; Mo, Y.; Jung, Y. S., Emerging Halide Superionic Conductors for All- Solid-State Batteries: Design, Synthesis, and Practical Applications. ACS Energy Lett. 2022, 7, 1776-1805. 3. Liang, J.; Li, X.; Adair, K. R.; Sun, X., Metal Halide Superionic Conductors for All-Solid-State Batteries. Accounts of Chemical Research 2021, 54, 1023-1033. 4. Makiura, R.; Yonemura, T.; Yamada, T.; Yamauchi, M.; Ikeda, R.; Kitagawa, H.; Kato, K.; Takata, M., Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgInanoparticles. Nature Mater 2009, 8, 476- 480. 5. Yamamoto, T.; Maesato, M.; Hirao, N.; Kawaguchi, S. I.; Kawaguchi, S.; Ohishi, Y.; Kubota, Y.; Kobayashi, H.; Kitagawa, H., The Room-Temperature Superionic Conductivity of Silver Iodide Nanoparticles under Pressure. J. Am. Chem. Soc. 2017, 139, 1392-1395. 6. Balischewski, C.; Behrens, K.; Zehbe, K.; Günter, C.; Mies, S.; Sperlich, E.; Kelling, A.; Taubert, A., Ionic Liquids with More than One Metal: Optical and Electrochemical Properties versus d-Block Metal Combinations. Chem. Eur. J. 2020, 26, 17504- 17513. 7. Balischewski, C.; Bhattacharyya, B.; Sperlich, E.; Günter, C.; Beqiraj, A.; Klamroth, T.; Behrens, K.; Mies, S.; Kelling, A.; Lubahn, S.; Holtzheimer, L.; Nitschke, A.; Taubert, A., Tetrahalidometallate(II) ionic liquids with more than one metal: the effect of bromide vs. chloride. Chem. Eur. J. 2022, 28, e202201068. 8. Bhattacharyya, B.,Balischewski, C.,Sperlich, E.,Günter, C.,Mies, S.,Kelling, A.,Taubert, A.,N-Butyl Pyridinium Diiodido Argentate(I): A One-Dimensional Ag-I Network with Superior Solid-State Ionic Conductivity at Room Temperature.Adv. Mater. Interfaces2023,10, 2202363.

P11

© The Author(s), 2023

Made with FlippingBook Learn more on our blog