Information Systems for Business and Beyond (2019)

customers. It is called “supervised” learning because we are directing (supervising) the analysis towards a result (in our example: consumers who respond favorably). Supervised learning techniques include analyses such as decision trees, neural networks, classifiers, and logistic regression. Unsupervised learning occurs when an organization has data and wants to understand the relationship(s) between different data points. For example, if a retailer wants to understand purchasing patterns of its customers, an unsupervised learning model can be developed to find out which products are most often purchased together or how to group their customers by purchase history. Is it called “unsupervised” learning because no specific outcome is expected? Unsupervised learning techniques include clustering and association rules.

Privacy Concerns

The increasing power of data mining has caused concerns for many, especially in the area of privacy. In today’s digital world, it is becoming easier than ever to take data from disparate sources and combine them to do new forms of analysis. In fact, a whole industry has sprung up around this technology: data brokers. These firms combine publicly accessible data with information obtained from the government and other sources to create vast warehouses of data about people and companies that they can then sell. This subject will be covered in much more detail in chapter 12 – the chapter on the ethical concerns of information systems.

Sidebar: What is data science? What is data analytics? Information Systems for Business and Beyond (2019) pg. 84

Made with FlippingBook flipbook maker