Playing with the weakest supramolecular interactions in a 3D crystalline hexakis[60]fullerene induces control over hydrogenation selectivity Estefanía Fernández Bartolomé ab , Arturo Gamonal a , José Santos ab , Saeed Khodabakhshi a , Eider Rodríguez-Sánchez a , E. Carolina Sañudo cd , Nazario Martín *ab and José Sánchez Costa *a a IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, Madrid, 28049, Spain. Tel:912998700 b Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.Tel: 91 394 5156 c Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028 Barcelona, Spain. Tel: 937 37 26 49 d Departament de Química Inorgánica i Orgánica, Secció química Inorgánica, Universidad de Barcelona, C/Martí i Franqués 1-11, Barcelona, 08028, Spain. Tel: 934 02 12 00 Weak forces can play an essential role in chemical reactions. Controlling such subtle forces in reorganization processes by applying thermal or chemical stimuli represents a novel synthetic strategy and one of the main targets in supramolecular chemistry 1 . Actually, to separate the different supramolecular contributions to the stability of the 3D assemblies is still a major challenge. Therefore, a clear differentiation of these contributions would help in understanding the intrinsic nature as well as the chemical reactivity of supramolecular ensembles 2 . In the present work 3,4 , a controlled reorganization of an hexakis[60]fullerene-based molecular compound purely governed by the weakest van der Waals interactions known, i.e. the dihydrogen interaction – usually called sticky fingers 5 – is illustrated. This prereorganization of the hexakis[60]fullerene under mild conditions allows a further selective hydrogenation of the crystalline material via hydrazine vapors exposure. This unique two-step transformation process is monitored by single-crystal to single-crystal diffraction (SCSC) which allows the direct observation of the molecular movements in the lattice and the subsequent solid–gas hydrogenation reaction. References 1. Sato, Nature Chemistry , 2016 , 8, 644–656. 2. -H. Deng, J. Luo, Y.-L. Mao, S. Lai, Y.-N. Gong, D.-C. Zhong and T.-B. Lu, Science Adances , 2020 , 6, eaax9976. Fernandez- Bartolome, J. Santos, A. Gamonal, S. Khodabakhshi, L. J.McCormick, S. J. Teat, E. C. Sañudo, J. S. Costa and N. Martín, Angewandte Chemie International Edition , 2019 , 28–31. 3. Fernandez-Bartolome, A. Gamonal, J. Santos, S. Khodabakhshi, Eider Rodríguez-Sánchez, E. C. Sañudo, J. S. Costa and N. Martín, Chemical Science , 2021 , 12, 8682–8688. 4. Echeverría, G. Aullón, D. Danovich, S. Shaik and S. Alvarez, Nature Chemistry, 2011 , 3, 323–330.
P76F
Made with FlippingBook Learn more on our blog