Additive manufacturing of Fe-TiO 2 three-dimensional photocatalyst architectures Miguel A. Gracia-Pinilla 1,2 , Norma A. Ramos-Delgado 1,3 , Han J.G.E. Gardeniers 1 and Arturo Susarrey-Arce 1 1 Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, Enschede 7500AE, The Netherlands, 2 Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria. San Nicolás de los Garza, Nuevo León, México, 3 Investigadora por México CONACyT / Tecnológico Nacional de México - Campus Nuevo León. Centro de Investigación e Innovación Tecnológica, Av. de la Alianza No. 507. Parque de Investigación e Innovación Tecnológica (PIIT) Apodaca, Nuevo León, México Additive manufacturing (3D printing) has revolutionized the production of three-dimensional materials and offers several advantages over traditional manufacturing (1,2). In this work, we present the design of TiO 2 and Fe-TiO 2 3D photocatalysts architectures with a special octet-truss lattice structure (3). The 3D photocatalyst is produced using a commercial photoresist containing 2 wt.% of TiO 2 , which is then supplemented with Al 2 O 3 nanoparticles (1 wt. %). After annealing at 550°C, the Al 2 O3-TiO 2 architectures shrinkage is ca. 50%. Regardless of the shrinkage, the obtained 3D structures are self-supported with excellent shape retention. Finally, the morphology and structural characteristics of the 3D photocatalyst architectures are characterized with XRD and SEM. Chemical composition is assessed with Raman, EDX, and XPS. The bandgap is estimated using UV-Vis. The functionality of the 3D-printed photocatalyst is assessed during the Fenton-photodegradation of methylene blue and phenol red. References 1. Mohd Yusoff, N. H., Chong, C. H., Wan, Y. K., Cheah, K. H., & Wong, V. L.(2023).Optimization strategies and emerging application of functionalized 3D-printed materials in water treatment: A review. 2. Journal of Water Process Engineering , 51 , [103410].Tan, J. Z. Y., Ávila-López, M. A., Jahanbakhsh, A., Lu, X., Bonilla-Cruz, J., Lara-Ceniceros, T. E., Andresen, J. M., & Maroto-Valer, M. M.(2023). 3. 3D direct ink printed materials for chemical conversion and environmental remediation applications: a review. Journal of Materials Chemistry A , 11 (11), 5408-5426.Ye, Y., Du, Y., Hu, T., You, J., Bao, B., Wang, Y., & Wang, T. (2021). 4. 3D printing of integrated ceramic membranes by the DLP method. Industrial & Engineering Chemistry Research , 60 (26), 9368-9377.
P164E
Made with FlippingBook Learn more on our blog