A low temperature route to lead sulfide (galena) films from bis(heterocyclic-dithiocarbamato) lead (II) precursors Yasser Turki Alharbi 1 , Laila Almanqur 2 , Suliman A. Alderhami 3 , George Whitehead 4 , Vitorica-Yrezabal 4 , David Collison 4 , David J. Lewis 5 1. Department of General Studies, Royal Commission for Jubail and Yanbu, Yanbu Industrial College, P.O. Box: 30436, Yanbu,Kingdom of Saudi Arabia. 2. Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Kingdom of Saudi Arabia. 3. Chemistry Department, Faculty of Science and Arts, AlBaha University, AlMikhwah, AlBaha 65312, Kingdom of Saudi Arabia. 4. Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. 5. Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. Three new heterocyclic bis(dithiocarbamato) lead(II) precursors were successfully synthesized and their structures were confirmed by single crystal X-ray diffraction. Cubic lead sulfide nanomaterials were obtained by two facile and inexpensive methods: solvent-less thermolysis and spray-coat-pyrolysis. The effects of the preparation techniques were characterized by powder X-ray diffraction (p-XRD), Raman spectroscopy, secondary electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). References 1. I. Kang and F. W. Wise, JOSA B , 1997, 14 , 1632–1646. 2. K. I. Y. Ketchemen, S. Mlowe, L. D. Nyamen, A. A. Aboud, M. P. Akerman, P. T. Ndifon, P. O’Brien and N. Revaprasadu, Inorganica Chim. Acta , 2018, 479 , 42–48. 3. X. Yao, S. Liu, Y. Chang, G. Li, L. Mi, X. Wang and Y. Jiang, ACS Appl. Mater. Interfaces , 2015, 7 , 23117–23123. 4. M. A. Malik, M. Afzaal and P. O’Brien, Chem. Rev. , 2010, 110 , 4417–4446. 5. N. OwusuBoadi, M. AzadMalik, P. O’Brien and J. A. M.Awudza, Dalton Trans. , 2012, 41 , 10497–10506. 6. J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka and A. Walsh, Phys. Rev. B , 2014, 89 , 205–203. 7. F. W. Wise, Acc. Chem. Res. , 2000, 33 , 773–780. 8. J. Tang and E. H. Sargent, Adv. Mater. , 2011, 23 , 12–29. 9. W. W. Scanlon, J. Phys. Chem. Solids , 1959, 8 , 423–428. 10. S. Johnsen, J. He, J. Androulakis, V. P. Dravid, I. Todorov, D. Y. Chung and M. G. Kanatzidis, J. Am. Chem. Soc. , 2011, 133 , 3460–3470. 11. H. Karami, M. Ghasemi and S. Matini, Int J Electrochem Sci , 2013, 8 , 19. 12. W. Wu, Y. He, Y. Wu and T. Wu, J. Alloys Compd. , 2011, 509 , 9356–9362. 13. L.D. Zhao, S.H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T. P. Hogan, D.Y. Chung, V. P. Dravid and M. G. Kanatzidis, J. Am. Chem. Soc. , 2011, 133 , 20476–20487. 14. S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar and G. D. Scholes, Sol. Energy Mater. Sol. Cells , 2007, 91 , 420–423. 15. U. Aeberhard, R. Vaxenburg, E. Lifshitz and S. Tomić, Phys. Chem. Chem. Phys. , 2012, 14 , 16223–16228.
P02DD
Made with FlippingBook Learn more on our blog