24 Again, asking sales to forecast sounds gmoaordk,ebt .uWt thhiel er es aa ll ei tsy i insptuhta ht es al pl es ss oh na rl ye kmnaorwk eat pdirei vc ee rosf, t h e sales forecasting tends to be biased based on sales and wouhtilpelasnavniinngg.the time and energy of thinking about lights- Real-time Planning. Yes, the supply chain is awash with rpel aanl -nt iimn ge. dTahtea .pUl asni nngi nrge aml -at si mt eer dd aa tt aa iussaens tohpeproerat ul -nt iimt yef o r cl ehaadn tni eml ea sn, dc os nu vpeprl syi ot on ur pa tdeast, ey ti eh led ps ,l awnani ti nt gi mf aecst, omr sa rl ikkeet pr ur ni cneisn, ga npdl aanvnai inl ag boi pl i tt iym. Ri zeaatl i-ot inmme oprl ae nf rnei nq gu ednotel ys. n o t m e a n Tophteimreiazsaotinonisesnimgipnlees. Minojercetsfrequent running of the noise into the complex, nmoena-nl isn oe fa ro ps ut i pmpi lzyi nc gh at hi ne ssyysstteemm. aS ni ndc ep rpol va indni ni ngg ai ss ybsot tehma oe nf gr ei nc eo sr dw, it lhl ea di ndc troe at sheedc forne fquusei onnc yi no fa nr uanl rnei na dg yp cl aonnnf ui ns ge d s ti t o a n te . when the organization faces disruption after disrup- Demand-Driven Material Requirements Planning (DDMRP) . Using better math to build an inventory plan fDoDr Mr aRwP ma sastue mr i aelss tihs aat gt oh oe do ri ddeear . iTs haegpo roodbpl ermo x iys ftohradt e - mand. Forecast Sharing. While running a supply chain based on tcho emdpoawn inesst rpeearmf o rcmu s at onmF eVrA’ safnoar leycsai ss tosno tuhned cs ugsot oo dm, ewr ’hs e n fyooruercsaesltf , ut hs ienyg f ti nh de Ft hVaAt ti en cahc nc ui qr ua ce i. eYsoaubwo ui l nl df i .nTde tsht at ht eo mn l y a few customer forecasts will be helpful. Sales Forecasting.
oprrgoacnesizsaetsioandadl tioncpernotcievsess.laInteandcdyitisiosune, ssa. les forecasting The Future SP ol a, ny no iun mg li og oh kt al iskke, ?wNhoa to wn ei l kl tnhoewf su, t bu ur et ho ef rSeu Ip sphl ya rCeh saoi nm e insights based on testing. Future applications are distributed and adaptive (re - duced latency to translate market data into actionable in- sights). In this transition, planners become orchestrators, and business leaders own planning outputs. The focus is on outcomes. The result is the redefinition of work: the net result is fewer planners with greater job satisfaction. Nt r ea xdte s- ot ef fps? bPel tawn en ei nngs toauxrocne o, mm ai ekse c, ha na nd gdee tl oi v ee nr abbalsee tdh oe n market signals and the design of supply chain flows to allow this shift to be successful. 1. Adaptive. The engines within planning shift to embrace machine learning and artificial intelligence, mt o ogvrianpgha- wb aasye fdr odma t ar be laastei os naanl dd oa nt at bo al osgei ca ar cl hmi toedc-t u r e s ei nl froerpmr es stehnetsaet iloe na sr n. Ai npg l ea nn gn ii nn eg sma an sdt ec ro nd tai tnauloa uy se lry lme aarpnpsi nbgy tmo imn iunlgt i pi nl es i og hu tt sp uf rtos m. F omr uelxt iapml epil ne ,piunt st hwi sh i l e mt h oe dFeol ri ne gc aosft LVKa Ql u de aAt da ,dme da c( hF iVnAe) l oe ua rt pn ui nt gs wi mhpi lreo dv ee d - creasing bias and bullwhip. The engine used eleven ivni spi ub ti sl i tt yo cmo anpf i gt ou rf ei vde boaustec do mo ne st .h(eRno el ee-dbsa os ef dd idf feemr eanntd team roles.) The engine learns based on the input and aligns the output while minimizing collinearity.
25
Made with FlippingBook Ebook Creator