Astrochemistry at high resolution Faraday Discussion

Autoionization from the plasmon resonance in isolated 1-cyanonaphthalene James N. Bull 1, 2 ,Paola Bolognesi 3 , Cate S. Anstöter 4 , Eleanor K. Ashworth 1 , José E. Navarro Navarrete 5 , Boxing Zhu 5 Robert Richter 6 , Nitish Pal 6 , Jacopo Chiarinelli 3 , Lorenzo Avaldi 3 , Henning Zettergren 5 and Mark H. Stockett 5 1 School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom. 2 Centre for Photonics and Quantum Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom. 3 CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, Rome, Italy. 4 Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom. 5 Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden. 6 Elettra Sincrotrone Trieste, Trieste, Italy Polycyclic aromatic hydrocarbons (PAHs) have been widely conjectured to be ubiquitous in space, supportedby the recent discovery of two isomers of cyanonaphthalene in the Taurus Molecular Cloud-1 usingradio astronomy [1] . Here, the photoionization dynamics of 1-cyanonaphthalene (1-CNN) are investigated usingsynchrotron radiation over the hν = 9.0–19.5 eV range, revealing that prompt autoionization from the plasmonresonance [2] dominates the photophysics over the hν = 11.5–16.0 eV range, and with minimal photo-induceddissociation over the microsecond timescale. The photoionization spectrum (i.e., relative cross-section)and photoelectron angular distributions are described using an ezDyson model combining Dyson orbitals with plane wave photoejection. When considering these data in conjunction with earlier radiative coolingmeasurements on 1-CNN+, which showed that cations formed with up to 5 eV of internal energy efficientlystabilize through recurrent fluorescence [3] , we conclude that organic backbone of 1-CNN molecules is resilientto photodestruction by VUV and soft XUV radiation. References 1. B. A. McGuire, R. A. Loomis, A. M. Burkhardt, K. L. K. Lee, C. N. Shingledecker, S. B. Charnley, I. R. Cooke, M. A. Cordiner, E. Herbst, S. Kalenskii, M. A. Siebert, E. R. Willis, C. Xue, A. J. Remijan, and M. C. McCarthy, Science 371, 1265 (2021). 2. Y. Ling and C. Lifshitz, Chem. Phys. Lett. 257, 587 (1996). 3. M. H. Stockett, J. N. Bull, H. Cederquist, S. Indrajith, M. Ji, J. E. Navarro Navarrete, H. T. Schmidt, H. Zettergren, and B. Zhu, Nat. Comm. 14, 395 (2023).

P22

© The Author(s), 2023

Made with FlippingBook Learn more on our blog