HOT|COOL NO. 2/2023 "AI & Digitalization"

This article gives a description of the Danish district heating company, Hvide Sande Dis- trict Heating, which has become independent of fossil fuels by using wind and solar energy. This has resulted in lower consumer heating prices in a time when other fossil fuelled district heating plants are raising their heating prices due to higher fossil fuel pric- es. The article describes the flexibility that daily optimization tools must have to be used to handle the multiple heat sources and the participation in the multiple electricity mar- kets, and the need of digital twins for the medium- and long-term planning of the plant.

By Anders N. Andersen, PhD, Ext. Ass. Professor at Aalborg University, R&D projects responsible at EMD International

However, to take advantage of this flexibility, a vast digitaliza- tion of the plant together with advanced bidding methods have been required. Figure 1 shows a picture of the Hvide Sande fishing town. The solar collector is shown in front, the three wind turbines are placed close to the North Sea and the two red arrows points at the two thermal storages, the one placed at the solar collector site and the other placed at the site with the CHPs, heat pump and electric boiler. The production units are shown in details in this YouTube film Planning of day-ahead bids in Hvide Sande Even in the day-ahead market, the daily market-based produc- tions are a challenge to plan. The manager has before 12 o´-

Hvide Sande, at the West coast of Jutland in Denmark, is a small fishing town. The district heating plant provides heat to 1,637 consumers. From being a natural gas fired Combined Heat and Power (CHP) plant, it has in recent years become more resilient by investing in a solar collector, wind turbines, a heat pump, an electrical boiler as well as more thermal stor- age capacity. Today, it is independent of natural gas. Fact-box 1 shows the present production units and storages at Hvide Sande District Heating. The two thermal storages of 2,000 m 3 and 1,200 m 3 , respective- ly, are able to store around 200 MWh-heat, which allows a very flexible market-based production on the different production units. The heat delivered to consumers can thus be produced many hours or days before delivery.

Figure 1: The small fishing town Hvide Sande at the West coast of Jutland in Denmark. The red arrows show the location of the two thermals storages.

Made with FlippingBook - Online magazine maker