5th International solar fuels - Poster presentations

Floatable composites for solar chemistry at the liquid-liquid interface Andrea Rogolino [a] , Stuart Linley [a],[b] , Papa Kwakye Kwarteng [a] , Shannon Bonke [a] , Carolina Pulignani [a] , Erwin Reisner [a] [a] Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK, [b] Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, L8S 4L8, Canada Floatable photocatalysts 1,2 are assembled by immobilizing semiconductors on floatable support matrices. These materials have recently been demonstrated in emerging technologies for water purification, 3 energy harvesting 4,5 and solar fuel synthesis. 6 Unlike monolithic packed-bed reactors and photosheets, floatable photocatalysts offer a potential platform for the products and charges compartmentalization across multiple phases in photoredox catalysis. The benefits of floatable photocatalysts have been demonstrated at the gas-water interface but have not yet been explored between immiscible solvents for chemical synthesis. Efforts to achieve the compartmentalization of liquid phase redox reactions have been mostly inspired by biological systems, 7 using artificial synthetic and colloidal nanoreactors based on liposomal structures. 8-12 We introduce a photocatalytic floatable composite with tunable density for applications in biphasic liquid-liquid photocatalysis. This composite enables spatial 2D confinement, catalyst recovery and paired photocatalysis with compartmentalization, giving access to substrate and product separation. The floatable photocatalysts pairs O 2 reduction reaction to aqueous H 2 O 2 with organic biomass valorization. Electrons for H 2 O 2 production are sourced from the oxidation of water-immiscible alcohols produced from biomass fermentation processes, or organo-soluble lignocellulose obtained as a by-product of the pulp industry. The reported system is the first example of fully heterogeneous, phase-segregated liquid-solid-liquid photocatalysis. References 1. W. H. Lee, C. W. Lee, G. D. Cha, B.-H. Lee, J. H. Jeong, H. Park, J. Heo, M. S. Bootharaju, S.-H. Sunwoo, J. H. Kim, K. H. Ahn, D.-H. Kim and T. Hyeon, Nature Nanotechnology , 2023, 18 , 754-762. 2. S. Linley and E. Reisner, Advanced Science , 2023, 10 , 2207314. 3. C. Pornrungroj, A. B. Mohamad Annuar, Q. Wang, M. Rahaman, S. Bhattacharjee, V. Andrei and E. Reisner, Nature Water , 2023, 1 , 952-960. 4. L. Zhu, T. Ding, M. Gao, C. K. N. Peh and G. W. Ho, Advanced Energy Materials , 2019, 9 , 1900250. 5. W. Wang, Y. Shi, C. Zhang, S. Hong, L. Shi, J. Chang, R. Li, Y. Jin, C. Ong, S. Zhuo and P. Wang, Nature Communications , 2019, 10 , 3012. 6. P. Shi, J. Li, Y. Song, N. Xu and J. Zhu, Nano Letters , 2024, 24 , 5673-5682. 7. L. Velasco-Garcia and C. Casadevall, Communications Chemistry , 2023, 6 , 263. 8. S. Rodríguez-Jiménez, H. Song, E. Lam, D. Wright, A. Pannwitz, S. A. Bonke, J. J. Baumberg, S. Bonnet, L. Hammarström and E. Reisner, Journal of the American Chemical Society , 2022, 144 , 9399-9412. 9. H. Zhang, J. Jaenecke, I. L. Bishara-Robertson, C. Casadevall, H. J. Redman, M. Winkler, G. Berggren, N. Plumeré, J. N. Butt, E. Reisner and L. J. C. Jeuken, Journal of the American Chemical Society , 2024, 146 , 34260–34264. 10. J. J. Grimaldi, S. Boileau and J.-M. Lehn, Nature , 1977, 265 , 229-230. 11. G. Steinberg-Yfrach, P. A. Liddell, S.-C. Hung, A. L. Moore, D. Gust and T. A. Moore, Nature , 1997, 385 , 239-241. 12. S. A. Savant, G. De Angelis, S. Nandy, E. Amstad and S. Haussener, Cell Reports Physical Science , 2024, 5 , 101755.

P76

© The Author(s), 2025

Made with FlippingBook Learn more on our blog