Semi-artificial photosynthesis for solar fuel production Yongpeng Liu Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road,
Cambridge, CB2 1EW, UK e-mail: yl862@cam.ac.uk
Converting solar energy into clean chemical fuels using H 2 O and CO 2 as feedstock is a key strategy for achieving a carbon-neutral society. The assembly of semiconductors as light absorbers and enzymes as redox catalysts offers a promising approach for sustainable chemical synthesis driven by light. However, the rational design of such semi-artificial systems requires a comprehensive understanding of the abiotic-biotic interface, which poses significant challenges. [1–2]
Figure 1 : Solar fuel production using bio-hybrids. This presentation will showcase our recent advancements in the development of novel semiconductors and the construction of bio-hybrids for solar fuel production, employing photoelectrochemistry and photocatalyst approaches. Emerging semiconducting materials such as SrTiO 3 , BiVO 4 ,CN X , CuInGaS 2 , ZnFe 2 O 4 , CuFe 2 O 4 , a-Fe 2 O 3 , and LaFeO 3 have been explored for direct solar H 2 production and CO 2 conversion, complemented by a set of spectroelectrochemistry such as intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS), photoelectrochemical impedance spectroscopy (PEIS) and operando Raman/UV-Vis spectroscopy. [3–12] Our findings contribute to the ongoing efforts in addressing the challenges associated with the abiotic-biotic interface in the rational design of efficient and selective solar-driven chemical synthesis systems. References 1. Y. Liu , C. W. S. Yeung, E. Reisner. 2025 , in revision . 2. Y. Liu , S. Rodríguez-Jiménez, H. Song, A. Pannwitz, D. Kim, A. M. Coito, R. R. Manuel, S. Webb, L. Su, S. A. Bonke, R. D. Milton, I. A. C. Pereira, S. Bonnet, L. Hammarström, E. Reisner. Angew. Chem. Int. Ed. 2025 , 64 , e202424222. 3. Y. Liu , A. B. M. Annuar, S. R.-Jiménez, C. W. S. Yeung, Q. Wang, A. M. Coito, R. R. Manuel, I. A. C. Pereira, E. Reisner. J. Am. Chem. Soc. 2024 , 146 , 29865-29876. 4. Y. Liu , C. Pulignani, S. Webb, S. J. Cobb, S. Rodríguez-Jiménez, D. Kim, R. D. Milton, E. Reisner. Chem. Sci. 2024 , 15 , 6088-6094. 5. Y. Liu , S. Webb, P. Moreno-García, A. Kulkarni, P. Maroni, P. Broekmann, R. D. Milton. JACS Au 2023 , 3 , 124-130. 6. Y. Liu , M. Xia, D. Ren, S. Nussbaum, J.-H. Yum, M. Grä tzel, N. Guijarro, K. Sivula. ACS Energy Lett. 2023 , 8 , 1645-1651. 7. Y. Liu , M. Bouri, L. Yao, M. Xia, M. Mensi, M. Grätzel, K. Sivula, U. Aschauer, N. Guijarro. Angew. Chem. Int. Ed. 2021 , 60 , 23651–23655. 8. Y. Liu , M. Xia, L. Yao, M. Mensi, D. Ren, M. Grätzel, K. Sivula, N. Guijarro. Adv. Funct. Mater. 2021 , 31 , 2010081. 9. Y. Liu , F. Le Formal, F. Boudoire, L. Yao, K. Sivula, N. Guijarro. J. Mater. Chem. A 2019 , 7 , 1669−1677. 10. Y. Liu , N. Guijarro, K. Sivula. Helvetica Chimica Acta 2020 , 103 , e2000064. 11. Y. Liu , F. Le Formal, F. Boudoire, N. Guijarro. ACS Appl. Energy Mater. 2019 , 2 , 6825−6833. 12. Y. Liu , J. Quiñonero, L. Yao, X. D. Costa, M. Mensi, R. Gómez, K. Sivula, N. Guijarro. J. Mater. Chem. A 2021 , 9 , 2888−2898.
P145
© The Author(s), 2025
Made with FlippingBook Learn more on our blog