Photocatalyst sheet performance under elevated UV intensities and temperatures Talib M. Rahman a , D. J. Osborn III a , Anthony E. Pellicone a , Patrick C. Tapping a , Tsuyoshi Takata b , Takashi Hisatomi b , Hiroshi Nishiyama c , Kazunari Domen c , Gunther G. Andersson d , Gregory F. Metha a a Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Australia, b Research Initiative for Supra-Materials (RISM), Shinshu University, Japan, c Office of University Professors, The University of Tokyo, Japan, d Flinders Institute for NanoScale Science and Technology, Flinders University, Australia Immobilised nano-particulate photocatalyst sheets offer a simplified approach to scaling water-splitting photocatalytic systems for low-emissions hydrogen production. This work investigated the effect of increased UV irradiation and temperature on the water-splitting performance of CoOOH/RhCrO x /SrTiO 3 :Al photocatalyst sheets. UV photon fluxes from 1.75´10 19 to over 250´10 19 photons·cm -2 ·hr -1 were investigated at ambient temperatures (23°C). Although the water-splitting rate increased with increasing intensity, the apparent quantum yield (AQY) was observed to decrease. The effect of temperature on liquid water splitting at 23°C, 35°C, 50°C, 90°C and 120°C was further explored at increasing UV photon flux. It was found that increasing temperatures improve AQY relative to the photon fluence. The reason for this effect is discussed in terms of bulk and surface effects reducing recombination. A method to equate light sources to solar equivalents was developed, and used to relate the UV photon fluxes investigated to concentrated solar equivalents. This work demonstrates the use of heating to improve the efficiency of photocatalytic water-splitting, draws attention to the necessity for considering the incident absorbable light intensity in measuring the performance of photocatalysts, and highlights the potential application of photocatalyst sheets under concentrated solar conditions. References 1. A. Fujishima and K. Honda, Nature , 1972, 238 , 37-38. 2. Q. Wang and K. Domen, Chem. Rev. (Washington, DC, U. S.) , 2020, 120 , 919-985. 3. H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi and K. Domen, Nature , 2021, 598 , 304-307. 4. T. Hisatomi and K. Domen, Nat. Catal. , 2019, 2 , 387-399. 5. B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller and T. F. Jaramillo, Energy Environ. Sci. , 2013, 6 , 1983-1922. 6. Q. Wang, C. Pornrungroj, S. Linley and E. Reisner, Nat. Energy , 2022, 7 , 13-24. 7. S. Chen, T. Takata and K. Domen, Nat. Rev. Mater. , 2017, 2 . 8. Y. Kageshima, H. Inuzuka, H. Kumagai, B. Ohtani, K. Teshima and H. Nishikiori, J. Phys. Chem. C. , 2023, 127 , 18327- 18339. 9. Y. Cho, A. Yamaguchi, R. Uehara, S. Yasuhara, T. Hoshina and M. Miyauchi, J. Chem. Phys , 2020, 152 , 231101-231101. 10. D. J. Kok, K. Irmscher, M. Naumann, C. Guguschev, Z. Galazka and R. Uecker, Phys. Status Solidi. A , 2015, 212 , 1880- 1887. 11. Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada and K. Domen, Joule , 2018, 2 , 509-520. 12. C. K. N. Peh, M. Gao and G. W. Ho, J. Mater. Chem. A , 2015, 3 , 19360-19367. 13. Further references do not fit within 550-word max
P38
© The Author(s), 2025
Made with FlippingBook Learn more on our blog