Creative thinking is supported in part by our ability to imagine the future—our capacity to envision experiences that have not yet occurred.
W hen we think about creativity, the arts often come to mind. Most people would agree that writers, painters, and actors are all creative. This is what psychologists who study the subject refer to as Big-C creativity: publicly-recognizable, professional-level performance. But what about creativity on a smaller scale? This is what researchers refer to as little-c creativity, and it is something that we all possess and express in our daily lives, from inventing new recipes to performing a do-it-yourself project to thinking of clever jokes to entertain the kids. One way psychologists measure creative thinking is by asking people to think of uncommon uses for common objects, such as a cup or a cardboard box. Their responses can be analyzed on different dimensions, such as fluency (the total number of ideas) and originality. Surprisingly, many people struggle with this seemingly simple task, only suggesting uses that closely resemble the typical uses for the object. The same happens in other tests that demand ideas that go beyond what we already know (i.e., “thinking outside the box”). Such innovation tasks assess just one aspect of creativity. Many new tests are being developed that tap into other creative skills, from visuospatial abilities essential for design (like drawing) to scientific abilities important for innovation and discovery. But where do creative ideas come from, and what makes some people more creative than others? Contrary to romantic notions of a purely spontaneous process, increasing evidence from psychology and neuroscience experiments indicates that creativity requires cognitive effort— in part, to overcome the distraction and “stickiness” of prior knowledge (remember how people think of common uses when asked to devise
brain imaging studies that found that the areas it connects—medial prefrontal cortex, posterior cingulate cortex, bilateral inferior parietal lobes, and medial temporal lobes—tend to activate “by default” when people are simply relaxing in a brain scanner without a cognitive task to do. When left to our own devices, we tend to engage in all sorts of spontaneous thinking—sometimes referred to as mind-wandering—much of which involves recalling recent experiences and imagining future ones. The engagement of the hippocampus and default network in memory and imagination is consistent with a popular theory of episodic memory known as the constructive episodic simulation hypothesis , which posits that both memory and imagination involve flexible recombination of episodic details, such as people, places, and events that we’ve encountered. On the one hand, remembering a past experience seems to require that we reconstruct that experience: piecing together the relevant people, places, and things that comprised the event—not simply pressing play like a video recorder. Likewise, imagining a future experience apparently requires that we construct that experience based on what has happened in the past. The flexible nature of the episodic system seems to be particularly beneficial for creative thinking, which also requires connecting information in new and meaningful ways. In a recent study, we explored further whether the same brain regions support memory, imagination, and creative thinking. We presented research participants with a series of object cue words (e.g., cup) and asked them to use the cue words to either 1) remember a personal past experience, 2) imagine a possible future experience, or 3) think of creative uses for the object. This design
creative ones). In light of these findings, we can consider general creative thinking as a dynamic interplay between the brain’s memory and control systems. Without memory, our minds would be a blank slate—not conducive to creativity, which requires knowledge and expertise. But without mental control, we wouldn’t be able to push thinking in new directions and avoid getting stuck on what we already know. Creativity By Default Creative thinking is supported in part by our ability to imagine the future— our capacity to envision experiences that have not yet occurred. From planning dinner to envisioning an upcoming vacation, we routinely rely on our imaginations to picture what the future might look like. Interestingly, the same brain region that allows us to imagine a future is also involved in recalling the past: the hippocampus. A seahorse-shaped region embedded in the temporal lobe of the brain, the hippocampus plays an important role in piecing together details of experiences— people, places, objects, actions—both to accurately re-construct past events and to vividly construct possible future events. Early research with amnesiac patients provided clear evidence for the role of the hippocampus in remembering and imagining, finding that patients with damage to this area had trouble not only recalling the past but also imagining the future. Since then, researchers have used functional magnetic resonance imaging (fMRI) to study how the brain remembers and imagines. Strikingly, some of the same brain regions activate when we recall past experiences and imagine future experiences. Important among them is a large set of cortical regions collectively known as called the default network. This network got its name from early
DANA FOUNDATION CEREBRUM | WINTER 2020 11
Made with FlippingBook - Online Brochure Maker