Cerebrum Winter 2020

While it remains unclear whether creativity can be improved in the long- term, some strategies may boost short-term creativity.

While it remains unclear whether creativity can be improved in the long- term (i.e, trait creativity), some strategies may boost short-term (i.e. state) creativity. Given what we’ve learned about the neuroscience of creativity, it seems possible that harnessing the flexible and generative potential of the default network may provide a short- term boost. For example, when we are stuck on a problem—a phenomenon known as fixation or impasse—taking a break to let our minds wander may loosen things up and help us find a creative solution. Another potentially useful strategy involves priming the episodic system. The episodic induction process mentioned earlier—thinking about a past experience with as much detail as possible—has been shown to temporarily boost the number of ideas people generate on a creative thinking task. Until rigorous science on creativity training has been conducted, there are a few things that may modestly boost creativity in a more sustained way. For one, we can pick up a creative hobby, like painting or learning a musical instrument. One study that trained students how to play music reported gains in their musical creativity over time. But whether such gains transfer to make people generally more creative is not yet known. (This is where cognitive “brain training” programs fall short: people tend to get better on specific training tasks, but this improvement doesn’t generalize to other tasks.) Until research has clarified whether cognitive abilities can actually be improved through neuroscience- based intervention, old-fashioned arts education might be our best bet. l

efficiently, without distraction from the mind-wandering default network. The study with visual artists, along with subsequent findings with poets and others, suggests that creative thinking involves increased communication between brain networks that usually work separately. In a recent study, we explored whether this brain connectivity pattern may provide insight into individual differences in creative thinking, i.e., what makes some people more creative than others? One possibility is that creative people can more readily co-activate the default and control networks to solve creative problems. We recruited a large sample of participants, mostly undergraduate and graduate students and asked them to complete the creative uses task during fMRI. We recorded their ideas while they were in the scanner and later scored them for creative quality, allowing us to link each person’s brain patterns to the quality of their ideas. We found that, as expected, people varied widely in their performance on this task. Some consistently came up with common uses for objects, such as saying a brick could be used for building something, while others devised decidedly more innovative responses, e.g. a brick could be ground up and used as a filtering substance. To analyze the data, we used a machine learning method called connectome-based predictive modeling (CPM). CPM allows researchers to characterize individual differences in such behavioral traits as personality and intelligence, by identifying functional connections in the brain that reliably predict these traits in new participants who were not used to build the models. In our study, CPM was used to estimate creative thinking ability based on brain connectivity patterns during the creative uses task.

Our analysis showed stronger functional connections between the default, control, and salience networks (a network involved in switching between the default and control networks) in highly creative people: the brain connectivity pattern reliably predicted the creativity score. Importantly, the association generalized to three other samples of participants: individuals with stronger functional connections between these networks tended to produce more original ideas. Boosting Creativity Psychology and neuroscience have made encouraging progress in our understanding of how the creative brain works. As summarized above, we now know that creative thinking involves the interplay of the brain’s default and executive control networks, and that these connections allow us to spontaneously generate ideas and critically evaluate them, respectively. And we are learning about how our memory systems contribute: the same networks that we use to recall the past also allow us to imagine future experiences and think creatively. Yet several important questions remain. One of the most important concerns whether creativity can be enhanced—and if so, how? Research findings thus far suggest that neuroscience tools can be used to predict the ability to think creatively, based on the strength of their brain network connections. But we do not yet know whether these connections can be strengthened to improve creative thinking. Longitudinal studies are needed. Just as the efficacy of cognitive or brain training programs in improving intelligence has been critically questioned, skepticism should be applied to interventions that claim to boost creativity.

Financial Disclosure: The author has no conflicts of interest to report.

DANA FOUNDATION CEREBRUM | WINTER 2020 13

Made with FlippingBook - Online Brochure Maker