MC16 2023 - Oral Book of abstracts

How does the spin transition affect electrical transport in 3D crystalline MOFs? Ana Martínez Martínez 1 , Esther Resines-Urien 1 , Lucía Piñeiro-López 1 , Ángel Fernández- Blanco 2,3 , Antonio Lorenzo Mariano 3 , Roberta Poloni 3 , Jose Alberto Rodríguez- Velamazán 2 , E. Carolina Sañudo 4,5 , Jorge Albalad 6 , Daniel Maspoch 6 , Enrique Burzurí 1,7 and José Sánchez Costa 1 1 IMDEA Nanociencia, Spain, 2 Institut Laue-Langevin, France, 3 Univ. Grenoble Alpes, CNRS, SINPA France, 4 Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universidad de Barcelona, Spain, 5 Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Spain, 6 Catalan Institute of Nanoscience and Nanotechnology, (ICN2), CSIC and The Barcelona Institute of Science ad Technology, Spain, 7 Departamento de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Spain Molecule-based Spin Crossover (SCO) materials display likely one of the most spectacular switchable processes. The SCO involves reversible changes in their physicochemical properties (i.e. optical, magnetic, electronic and elastic) that are coupled with the spin-state change under an external perturbation (i.e. temperature, light, magnetic field or the inclusion of analytes). Although very promising for their future integration into electronic devices, 1 most of the SCO compounds show two major drawbacks: i) their intrinsic low conductance and ii) the unclear mechanism connecting the spin-state change and the electrical conductivity. Herein,we report the controlled single-crystal-to-single-crystal temperature-induced transformation in a robust metal-organic framework (MOF), 2,3 [Fe 2 (H 0 , 67 bdt) 3 ]·9H 2 O (1), being bdt 2− = 1,4-benzeneditetrazolate, exhibiting a dynamic spin-state change concomitant with a increment in the anisotropic electrical conductance. 1remains intactduring the SCO process even after approximately a 15% volume reduction. The experimental and theoretical rationalization of the electronic orbital delocalization in the MOF points to a direct correlation between the spin- state of the iron and the electronic conductivity of the 3D structure.

Figure 1. IVcharacteristics at different temperatures,i.e. different spin states of the metallic centres. References 1. Rubio-Giménez, S. Tatay, C. Martí-Gastaldo, Chem. Soc. Rev. 2020, 49, 5601–5638. 2. Yan, M. Li, H.-L. Gao, X.-C. Huang, D. Li, Chem. Commun. 2012, 48, 3960. 3. S. Xie, L. Sun, R. Wan, S. S. Park, J. A. DeGayner, C. H. Hendon, M. Dincă, J. Am. Chem. Soc. 2018, 140, 7411–7414.

F28

© The Author(s), 2023

Made with FlippingBook Learn more on our blog