DC Mathematica 2016

 2 ∑( + )( +  − 1)  

 +−2 + ∑( + )  

 +−1

+ ( 2 −  2 )∑ 

 + = 0

 + +∑( + )  

 +

⇒ ∑( + )( +  − 1)  

+ ( 2 −  2 )∑ 

 + = 0

 + +∑( + )  

 + +∑ 

 ++2

⇒ ∑( + )( +  − 1)  

−∑ 2  

 + = 0

⇒ ∑(( + ) 2 −  2 )  ⇒  (∑(( + ) 2 − ∞ =0

 + +∑ 

 ++2 = 0

 2 ) 

  +∑ 

 +2

) = 0

=0

Now we want the power of x both be the same, so we let n = k and n+2=k respectively

Then, we get

 (∑(( + ) 2 − ∞ =0

 2 ) 

  +∑ −2

 

) = 0

=2

Write down the case of k=0 and k=1

 1 +∑((( + ) 2 −  2 )  ∞ =2

 {( 2 −  2 ) 0

 0 + ((1 + ) 2 −  2 ) 1

)  )} = 0

+  −2

Since the whole equation equals to zero,  is a viable, we get  2 −  2 = 0,  1 = 0, ((( + ) 2 −  2 )  +  −2 ) = 0

From  2 −  2 = 0 ,  2 =  2 so

 = 

Or

 = −

Consider the case that  =  We get

 1 +∑(( 2 + 2)  ∞ =2

)  = 0

(1 + 2v) 1

+  −2

Since the equation equals 0 again, so 1 + 2v = 0, ( + 2)  +  −2

= 0 Then we get

1 −2

 =

19

Made with FlippingBook - professional solution for displaying marketing and sales documents online