Therefore, we get
Γ(1 + v) = vΓ(v)
Substitute v=v+1
Γ(2 + v) = (v + 1) ∗ v ∗ Γ(v) Γ(3 + v) = (2 + v) ∗ (v + 1) ∗ v ∗ Γ(v) Γ(n + 1 + v) = (n + v) ∗ (n − 1 + v) ∗ … .∗ (2 + v) ∗ (v + 1) ∗ v ∗ Γ(v)
Substitute the above equation into 2
1 2 𝑣 ∗ Γ(1 + v)
(−1)
2
=
Γ(n + 1 + v) v ∗ Γ(v)
2 2 ∗ ! ∗
1 2 𝑣 ∗ vΓ(v)
(−1)
2
=
Γ(n + 1 + v) v ∗ Γ(v)
2 2 ∗ ! ∗
(−1) 2 2+ ∗ ! ∗ Γ(n + 1 + v) (−1) 2 2− ∗ ! ∗ Γ(n + 1 − v)