DC Mathematica 2016

Therefore, we get

Γ(1 + v) = vΓ(v)

Substitute v=v+1

Γ(2 + v) = (v + 1) ∗ v ∗ Γ(v) Γ(3 + v) = (2 + v) ∗ (v + 1) ∗ v ∗ Γ(v) Γ(n + 1 + v) = (n + v) ∗ (n − 1 + v) ∗ … .∗ (2 + v) ∗ (v + 1) ∗ v ∗ Γ(v)

Substitute the above equation into  2

1 2 𝑣 ∗ Γ(1 + v)

(−1) 

 2

=

Γ(n + 1 + v) v ∗ Γ(v)

2 2 ∗ ! ∗

1 2 𝑣 ∗ vΓ(v)

(−1) 

 2

=

Γ(n + 1 + v) v ∗ Γ(v)

2 2 ∗ ! ∗

(−1)  2 2+ ∗ ! ∗ Γ(n + 1 + v) (−1)  2 2− ∗ ! ∗ Γ(n + 1 − v)

=𝑣 =

 2

=−𝑣 =

 2

Since  2+1 = 0 in the case r=v , then we get

 +

 = ∑ 

 +𝑣

= ∑ 

𝑁=0

(−1)  2 2+𝑣 ∗ ! ∗ Γ(n + 1 + v)

 2+𝑣 = ∑

 2+𝑣

= ∑ 2

𝑁=0

𝑁=0

 2

(−1)  ( ) 2+𝑣 ! ∗ Γ(n + 1 + v)

 𝑣

= ∑

𝑁=0

Let this equation be J v In the case  = −

 2

(−1)  ( ) 2−𝑣 ! ∗ Γ(n + 1 − v)

 −𝑣

= ∑

𝑁=0

Let this equation be J −v Therefore, the above two equations J v

and J −v

are called the Bessel equation of

the first kind of the order v and –v respectively y =  1  𝑣 () +  2  𝑣 ()

21

Made with FlippingBook - professional solution for displaying marketing and sales documents online