DC Mathematica 2016

Where

() −  −𝑣

cos(𝜋)  𝑣

()

() =

 𝑣

sin(𝜋)

For example  2  ′′ +  ′ + ( 2 − 1 3 )  = 0 v=-3 or v=3 then all you have to do is to substitute v= 1 3

and v= − 1 3

into  𝑣

,  −𝑣

and

y =  1

 𝑣

() +  2

 𝑣

()

1 3

(−1) 𝑛 ( 𝑥 2

) 2𝑛+

∞ =0

E.g.: Bessel function of first kind of order 3  1 3 Bessel function of first kind of order -3

= ∑

!∗Γ(n+ 4 3

)

1 3

 2

) 2−

(−1)  (

 −1 3

= ∑

2 3

)

! ∗ Γ (n +

=0

Bessel function of second kind

y =  1

 𝑣

() +  2

 𝑣

()

1 3

() − 

cos (

𝜋)  1 3

()

1 3

() =

 1 3

1 3

sin(

𝜋)

1 2

() − 

() − 2

 1 3

()

 1 3

()

1 3

1 3

=

=

√3 2

√3

Therefore,

1

1 3 ∗ Γ(

1 3

4 3

 2

) 2+

(−1)  (

2

)

 =

4 3

16 3

)

! ∗ Γ (n +

=0

as  1

= 0

Bibliography K.F.RILEY, M. a. (2006). Mathematical Methods for physcs ad Engineering. Keiser, G. (1991). Optical Fiber Communications.

22

Made with FlippingBook - professional solution for displaying marketing and sales documents online