Chapter 2 | Limits
151
f ( x ); lim
f ( x ); lim
f ( x ); f (−2)
lim x →−2 −
b.
x →−2
x →−2 +
f ( x ); lim
f ( x ); lim x →1 f ( x ); lim x →3
f ( x ); f (1)
lim x →1 − lim x →3 −
c.
x →1 +
f ( x ); lim
f ( x ); f (3)
d.
x →3 +
Figure 2.21 The graph shows f ( x ).
Solution Using Infinite Limits from Positive Integers and the graph for reference, we arrive at the following values: a. lim x →−4 − f ( x ) =0; lim x →−4 + f ( x ) =0; lim x →−4 f ( x ) =0; f (−4) =0 b. lim x →−2 − f ( x ) =3.; lim x →−2 + f ( x ) =3; lim x →−2 f ( x ) =3; f (−2) is undefined c. lim x →1 − f ( x ) =6; lim x →1 + f ( x ) =3; lim x →1 f ( x ) DNE; f (1) =6 d. lim x →3 − f ( x ) =−∞; lim x →3 + f ( x ) =−∞; lim x →3 f ( x ) =−∞; f (3) is undefined
f ( x ) for f ( x ) shown here:
Evaluate lim x →1
2.10
Made with FlippingBook - professional solution for displaying marketing and sales documents online