Calculus Volume 1

158

Chapter 2 | Limits

g ( x )

f ( x )

lim x →0 +

lim x →0 − lim x →0 +

66.

71.

f ( x )

72.

g ( x )

67. lim x →0

f ( x )

73. lim x →0 74. lim x →1 75. lim x →2

In the following exercises, use the graph of the function y = h ( x ) shown here to find the values, if possible. Estimate when necessary.

f ( x )

f ( x )

In the following exercises, sketch the graph of a function with the given properties. 76. lim x →2 f ( x ) =1, lim x →4 − f ( x ) =3, lim x →4 + f ( x ) =6, f (4) is not defined. 77. lim x → −∞ f ( x ) =0, lim x →−1 − f ( x ) =−∞, lim x →−1 + f ( x ) =∞, lim x →0 f ( x ) = f (0), f (0) =1, lim x →∞ f ( x ) =−∞

f ( x ) =2, lim x →3 −

f ( x ) =−∞,

lim x

78.

→ −∞

h ( x )

lim x →0 − lim x →0 +

68.

f ( x ) =∞, lim x →∞

f ( x ) =2, f (0) = −1 3

lim x →3 +

h ( x )

69.

f ( x ) =2, lim

f ( x ) =−∞,

lim x

79.

→ −∞

x →−2

f ( x ) =2, f (0) =0

lim x →∞

h ( x )

70. lim x →0

80. lim x → −∞

In the following exercises, use the graph of the function y = f ( x ) shown here to find the values, if possible. Estimate when necessary.

f ( x ) =0, lim

f ( x ) =∞, lim

f ( x ) =−∞,

x →−1 −

x →−1 +

f (0) = −1, lim x →1 −

f ( x ) =−∞, lim x →1 +

f ( x ) =∞, lim x →∞

f ( x ) =0

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12

Made with FlippingBook - professional solution for displaying marketing and sales documents online