Calculus Volume 1

176

Chapter 2 | Limits

2.3 EXERCISES In the following exercises, use the limit laws to evaluate each limit. Justify each step by indicating the appropriate limit law(s). 83. lim x →0 ⎛ ⎝ 4 x 2 −2 x +3 ⎞ ⎠

1 a + h −

1 a

lim h →0

, where a is a non-zero real-valued

98.

h

constant

sin θ tan θ

99. lim θ → π

x 3 +3 x 2 +5 4−7 x

84. lim x →1

x 3 −1 x 2 −1

100. lim x →1

x 2 −6 x +3

lim x →−2

85.

2 x 2 +3 x −2 2 x −1

lim x →1/2

101.

(9 x +1) 2

lim x →−1

86.

x +4−1 x +3

lim x →−3

102.

In the following exercises, use direct substitution to evaluate each limit. 87. lim x →7 x 2

In the following exercises, use direct substitution to obtain an undefined expression. Then, use the method of Example 2.23 to simplify the function to help determine the limit.

⎛ ⎝ 4 x 2 −1 ⎞ ⎠

lim x →−2

88.

2 x 2 +7 x −4 x 2 + x −2 2 x 2 +7 x −4 x 2 + x −2

lim x →−2 −

103.

1 1+sin x

89. lim x →0

lim x →−2 +

104.

2

e 2 x − x

90. lim x →2

2 x 2 +7 x −4 x 2 + x −2

lim x →1 −

105.

2−7 x x +6

91. lim x →1

106. 2 x 2 +7 x −4 x 2 + x −2 In the following exercises, lim x →1 +

ln e 3 x

92. lim x →3

assume that

In the following exercises, use direct substitution to show that each limit leads to the indeterminate form 0/0. Then, evaluate the limit.

lim x →6 h ( x ) =6. Use these three facts and the limit laws to evaluate each limit. 107. lim x →6 2 f ( x ) g ( x ) f ( x ) =4, lim x →6 g ( x ) =9, and lim x →6

x 2 −16 x −4 x −2 x 2 −2 x 3 x −18 2 x −12

93. lim x →4

g ( x )−1 f ( x )

108. lim x →6

94. lim x →2

109. lim x →6 ⎛ 110. lim x →6 ⎛

⎞ ⎠

⎝ f ( x )+ 1 3

g ( x )

95. lim x →6

⎞ ⎠ 3

⎝ h ( x )

(1+ h ) 2 −1 h

96. lim h →0

2

g ( x )− f ( x )

111. lim x →6 112. lim x →6

t −9

97. lim t →9

t −3

x · h ( x )

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12

Made with FlippingBook - professional solution for displaying marketing and sales documents online