Calculus Volume 1

Chapter 4 | Applications of Derivatives

437

2 x −5 4 x

281. f ( x ) = x 3 +1 x 3 −1 282. f ( x ) = sin x +cos x sin x −cos x 283. f ( x ) = x −sin x

lim x →∞

262.

x 2 −2 x +5 x +2

lim x

263.

→∞

3 x 3 −2 x x 2 +2 x +8

lim x

264.

→−∞

284. f ( x ) = 1 x − x For the following exercises, construct a function f ( x ) that has the given asymptotes. 285. x =1 and y =2 286. x =1 and y =0 287. y =4, x =−1 288. x =0 For the following exercises, graph the function on a graphing calculator on the window x = ⎡ ⎣ −5, 5 ⎤ ⎦ and estimate the horizontal asymptote or limit. Then, calculate the actual horizontal asymptote or limit. 289. [T] f ( x ) = 1 x +10

x 4 −4 x 3 +1 2−2 x 2 −7 x 4

lim x

265.

→−∞

3 x x 2 +1

lim x

266.

→∞

4 x 2 −1 x +2

lim x

267.

→−∞

4 x x 2 −1

lim x

268.

→∞

4 x x 2 −1

lim x

269.

→−∞

270. 2 x x − x +1 For the following exercises, find the horizontal and vertical asymptotes. 271. f ( x ) = x − 9 x lim x →∞

x +1 x 2 +7 x +6

290. [T] f ( x ) =

x 2 +10 x +25

291. [T] lim x

272. f ( x ) = 1

→−∞

1− x 2

x +2 x 2 +7 x +6

292. [T] lim x

273. f ( x ) = x 3

→−∞

4− x 2

3 x +2 x +5

293. [T] lim x →∞

274. f ( x ) = x 2 +3 x 2 +1 275. f ( x ) = sin( x )sin(2 x ) 276. f ( x ) =cos x +cos(3 x )+cos(5 x )

For the following exercises, draw a graph of the functions without using a calculator. Be sure to notice all important features of the graph: local maxima and minima, inflection points, and asymptotic behavior.

294. y =3 x 2 +2 x +4 295. y = x 3 −3 x 2 +4 296. y = 2 x +1 x 2 +6 x +5 297. y = x 3 +4 x 2 +3 x 3 x +9

x sin( x ) x 2 −1

277. f ( x ) =

278. f ( x ) = x

sin( x )

279. f ( x ) = 1

x 3 + x 2

280. f ( x ) = 1

x

x −1 −2

Made with FlippingBook - professional solution for displaying marketing and sales documents online