Calculus Volume 1

Chapter 4 | Applications of Derivatives

471

xe 1/ x

lim x →∞

391.

x 1/cos x

lim x →0 +

392.

x 1/ x

lim x →0 +

393.

x

⎛ ⎝ 1− 1 x

⎞ ⎠

lim x →0 -

394.

x

⎛ ⎝ 1− 1 x

⎞ ⎠

lim x

395.

→∞

For the following exercises, use a calculator to graph the function and estimate the value of the limit, then use L’Hôpital’s rule to find the limit directly.

e x −1 x

396. [T] lim x →0

⎛ ⎝ 1 x

⎞ ⎠

397. [T] lim x →0

x sin

x −1 1−cos( πx ) e ( x −1) −1 x −1

398. [T] lim x →1

399. [T] lim x →1

( x −1) 2 ln x 1+cos x sin x

400. [T] lim x →1

401. [T] lim x → π

402. [T] lim x →0 ⎛ 403. [T] lim x →0 +

⎝ csc x − 1 x ⎞ ⎠

tan( x x )

ln x sin x

404. [T] lim x →0 +

e x − e − x x

405. [T] lim x →0

Made with FlippingBook - professional solution for displaying marketing and sales documents online