Calculus Volume 1

Chapter 4 | Applications of Derivatives

489

Differentiation Formula Indefinite Integral

d dx (

∫ kdx = ∫ kx 0 dx = kx + C

k ) =0

d dx (

n +1 n +1 +

x n ) = nx n −1

x n dn = x

C for n ≠−1

d dx (ln|

∫ 1

x |) = 1 x

x dx = ln| x | + C

d dx (

∫ e x dx = e x + C

e x ) = e x

d dx (sin

∫ cos xdx = sin x + C

x ) =cos x

d dx (cos

∫ sin xdx =−cos x + C

x ) =−sin x

d dx (tan

∫ sec 2 xdx = tan x + C

x ) = sec 2 x

d dx (csc

∫ csc x cot xdx =−csc x + C

x ) =−csc x cot x

d dx (sec

∫ sec x tan xdx = sec x + C

x ) = sec x tan x

d dx (cot

∫ csc 2 xdx =−cot x + C

x ) =−csc 2 x

⎛ ⎝ sin −1 x

⎞ ⎠ = 1

d dx

∫ 1

= sin −1 x + C

1− x 2

1− x 2

⎛ ⎝ tan −1 x

⎞ ⎠ = 1

d dx

1 1+ x 2

dx = tan −1 x + C

1+ x 2

⎛ ⎝ sec −1 | x | ⎞

d dx

1 x x 2 −1

dx = sec −1 | x | + C

⎠ = 1

x x 2 −1

Table 4.13 Integration Formulas

From the definition of indefinite integral of f , we know

∫ f ( x ) dx = F ( x )+ C

Made with FlippingBook - professional solution for displaying marketing and sales documents online