Calculus Volume 1

Chapter 5 | Integration

511

b. The sum of the terms ⎛

⎞ ⎠ for i =1,2,3,4,5,6.

⎝ i 3 − i 2

Solution a. Multiplying out ( i −3) 2 , we can break the expression into three terms. ∑ i =1 200 ( i −3) 2 = ∑ i =1 200 ⎛ ⎝ i 2 −6 i +9 ⎞ ⎠

= ∑ i =1 200 = ∑ i =1 200

i 2 − ∑ i =1 200 i 2 −6 ∑ i =1 200

6 i + ∑ i =1 200 i + ∑ i =1 200

9

9

⎡ ⎣ 200(200 + 1) 2 ⎤

⎦ +9(200)

= 200(200 + 1)(400 + 1) 6

−6

= 2,686,700 − 120,600 + 1800 = 2,567,900 b. Use sigma notation property iv. and the rules for the sum of squared terms and the sum of cubed terms. ∑ i =1 6 ⎛ ⎝ i 3 − i 2 ⎞ ⎠ = ∑ i =1 6 i 3 − ∑ i =1 6 i 2

2 (6+1) 2

6(6+1) ⎛

⎝ 2(6)+1 ⎞ ⎠ 6

= 6

4 −

546 6

= 1764 4 −

=350

Find the sum of the values of 4+3 i for i = 1, 2,…, 100.

5.2

Example 5.3 Finding the Sum of the Function Values

Find the sum of the values of f ( x ) = x 3 over the integers 1, 2, 3,…, 10.

Solution Using the formula, we have

∑ i =0 10

2 (10+1) 2 4

i 3 = (10)

= 100(121) 4 =3025.

Made with FlippingBook - professional solution for displaying marketing and sales documents online